
Enhancing Dexterity in Robotic Manipulation
via Hierarchical Contact Exploration

Xianyi Cheng, Sarvesh Patil, Zeynep Temel, Oliver Kroemer, and Matthew T. Mason

Abstract— We present a hierarchical planning framework
for dexterous robotic manipulation (HiDex). This framework
exploits in-hand and extrinsic dexterity by actively exploring
contacts. It generates rigid-body motions and complex contact
sequences. Our framework is based on Monte-Carlo Tree
Search (MCTS) and has three levels: 1) planning object motions
and environment contact modes; 2) planning robot contacts;
3) path evaluation and control optimization that passes the
rewards to the upper levels. This framework offers two main
advantages. First, it allows efficient global reasoning over
high-dimensional complex space created by contacts. It solves
a diverse set of manipulation tasks that require dexterity,
both intrinsic (using the fingers) and extrinsic (also using the
environment), mostly in seconds. Second, our framework allows
the incorporation of expert knowledge and customizable setups
in task mechanics and models. It requires minor modifications
to accommodate different scenarios and robots. Hence, it
could provide a flexible and generalizable solution for various
manipulation tasks. As examples, we analyze the results on 7
hand configurations and 15 scenarios. We demonstrate 8 of
them on two robot platforms.

I. INTRODUCTION

Robots need dexterity to perform daily manipulation and
complex industrial tasks. Consider taking a book from the
bookshelf. The robot should consider the occlusion of the
bookshelf and other books, even use them, to get the book
out. The robot need to not only use it own fingers dexter-
ously, but also be smart about exploiting its environment, as
“external” fingers to support the movements of the object.

The automatic planning of intrinsic and extrinsic dexterity
for general manipulation tasks still remains challenging.
First, as contacts introduce discontinuity and changes in
system dynamics, planning through contacts is particularly
difficult [1], especially considering both robot and environ-
ment contacts for the object. Second, due to the diverse
nature of manipulation, it is hard to predefine all the pos-
sibilities for dexterity as motion primitives. It is important
for the robot to be able to discover dexterous motions by
its own. Third, current manipulation planners or policies
are often tailored for specific problems. A complex in-
hand manipulation pipeline [2] cannot directly solve on-
table object reorientation problems in [3], and neither of
them can be directly applied to planar pushing [4]. As real-
world manipulation problems are often mixes of specific
manipulation tasks, it is important for a general manipulation
planner to cover different tasks.

The authors are with Carnegie Mellon University, Pittsburgh, PA,
15213, USA. {xianyic, sarveshp, ztemel, okroemer,
mm3x}@andrew.cmu.edu

Video: https://youtu.be/fScfat1Ys6U
Code: https://github.com/XianyiCheng/HiDex

Level 1: search environment contact modes & plan object trajectory

...

...

evaluator

Level 2: search robot contacts

Level 3: path evaluation and
 control optimization

...

mode node

pose node
robot contact
location node

reward
backpropagate

details of
a path (level 1&3)
/ a node (level 2)

pass to
the next level

...

Fig. 1: An overview of our framework, with an example of
picking up a card. The following processes run iteratively.
Level 1 plans object trajectories, interleaving searches over
discrete contact modes (▭ nodes) and continuous object
poses (◯ nodes). An object trajectory is passed to Level
2 (⇩) to plan robot contact sequences on the object surface
(◌ nodes). The full trajectory of object motions and robot
contacts is passed to Level 3 (⇩) for evaluation and control
optimization. After evaluation, Level 3 passes the reward
back to the upper levels (↻). The reward is updated for every
node in the path (bold nodes). In the example, the robot pulls
the card the edge of the table and then grasps it.

We propose a hierarchical framework, as shown in Fig-
ure 1, aiming to address challenges mentioned above. We
take an object-centric view to represent the object contact
interactions with the environment and the robot. To effec-
tively explore the complex space created by contacts, we
exploit a hierarchical structure combined with MCTS[5].
In Level 1, we perform object trajectory and environment
contact mode planning. Environment contact information

ar
X

iv
:2

30
7.

00
38

3v
1

 [
cs

.R
O

]
 1

 J
ul

 2
02

3

https://youtu.be/fScfat1Ys6U
https://github.com/XianyiCheng/HiDex

(contact modes) are used to guide the generation of object
motions — which we consider as the active exploration of
extrinsic dexterity. In Level 2, given an object trajectory, the
intrinsic dexterity is planned by optimizing for robot contact
sequences on the object surface. In Level 3, more details
and optimization of the plans are computed and rewards
are backpropagated. MCTS used in Level 1 and 2 allows
us to encode expert knowledge and information gathered
during the search process as heuristics, guiding the search
directions and balancing exploitation and exploration. In
addition, we employ Rapidly-exploring random tree (RRT)
[6] as the MCTS rollout to enhance the exploration of object
configuration space in Level 1.

Our design works with different task mechanics, robot
hand configurations, object and environment models. It is
easy to configure many new scenarios with simply one file
in our code. It is flexible to encode expert knowledge into the
search through MCTS action policies, value estimations, and
rewards. We instantiate this framework on manipulation with
extrinsic dexterity and in-hand manipulation. Demonstrated
tasks include pick up a card, book-out-of-bookshelf, peg-
out-of-hole, block flipping, occluded grasp, upward peg-in-
hole, sideway peg-in-hole, planar reorientation, planar block
passing, and in-hand reorientation. As discussed in Section
VI, we envision this framework can be extended towards
general manipulation planning that incorporates global rea-
soning, mechanics, learning, and optimization.

II. RELATED WORK

A. Dexterous Manipulation Planning
Most works in manipulation focus on individual skills, like

pushing [7][4], pivoting [8], [9], [3], [10], tumbling [11],
grasping [12][13], on-table reorientation [3], and predefined
dynamic skills [14]. While the mechanics and planning
of specific motion types are studied in depth, generating
dexterous manipulation planning is still under-explored.

What are the essential challenges about dexterous manip-
ulation planning? The presence of potential contact changes
introduce discontinuity and changes in system dynamics
(non-differentiable). This leaves us a high dimensional, non-
convex, discrete and continuous space to plan through.

Contact-implicit trajectory optimization (CITO) [1] di-
rectly solves nonlinear programming (NLP) problems in the
complex hybrid space. Most methods simplify the problems
to make them tractable. Simplifications include simple primi-
tive shape representation[15], [16], reducing to 2D, and small
number of contact transitions [17], [18], [19]. Moreover,
CITO can be slow and intractable without good initialization.

It is worth to explore the space through global search. To
capture the discreteness of manipulation systems, previous
research searches through predefined manipulation modes
and solve for each mode sequence the whole trajectory using
an NLP [20]. For dexterous manipulation, manually defin-
ing modes could be engineering heavy or even intractable,
as suggested by observations in dexterous grasping [21].
Alternatively, expert knowledge in contacts, like contact
formations [22], contact states [23] and contact modes [24],

[25] are exploited to efficiently generate rigid body motions
between two bodies [26], within a robot hand [27], [28],
dexterous pregrasps [29], under environment contacts [30],
[31], [32], and with local trajectory optimization combined
with high-level planning [33], [34]. Contact modes can help
guide automatically generation of motion primitives that
are differentiable in dynamics [35]. Built on the idea of
exploiting contacts, our work pushes forward towards a more
general framework in 3D dexterous manipulation. We exploit
hierarchies inspired by previous hierarchical frameworks for
2D manipulation [36], [37]. While we share a similar idea
of decomposing the search in object motions and robot
contacts, we design different pipelines, efficient exploration
of contacts, and new representations to make it feasible for
complex 3D scenarios.

Reinforcement learning (RL) is efficient in discovering
manipulation skills from direct interactions with the environ-
ment, like in-hand manipulation [2], dexterous grasping [38],
and multi-step object reorientation [39]. RL faces the same
challenges from high-dimensional complex spaces, leading
to sample efficiency problems. RL also requires significant
training for new tasks, while our planners can be directly
used for a new object or environment. For future research,
we hope to combine our framework with RL to leverage the
strength of both.

B. Monte-Carlo Tree Search
MCTS is a heuristic search algorithm that uses random

sampling for efficient exploration. The AlphaGo family of
algorithms [40], [41] combines MCTS with deep neural net-
works, achieving a superhuman level of play in board games
like Go. MCTS has also shown it effectiveness in robotic
applications such as robot task planning [42], task and mo-
tion planning [43], and object rearrangement planning [44],
[45]. MCTS has also shown potentials to plan in the large
combinatoric space for contacts. Previous works include gait
planning for legged robots [46] and robot contact sequence
planning given user-designed object trajectories[47]. Based
on these works, our work takes one step further in planning
not only robot contacts, but also object interactions with
environment contacts (exploiting extrinsic dexterity[48]).

The incorporation of MCTS also offers several current and
future benefits, including efficient search through vast com-
plex space, potentials for continuous improvement through
deep learning and self-exploration [41], and parallelizability
to accelerate the search [49].

III. PRELIMINARY: MCTS
Level 1 and 2 use the MCTS skeleton in Algorithm 1. A

search tree  = ( , ) contains a set of nodes  and edges
 . A node is associated with a visited state 𝑠. An edge is
associated with a state transition 𝑠

𝑎
←←←←←←→ 𝑠′ through action 𝑎.

GROW-TREE iteratively expands the tree following four
steps in Figure 2: selection, expansion, rollout, and backprop-
agation. Selection determines search directions by selecting
the next node through a score that balances exploration
and exploitation. We employ the idea in AlphaGo [40] —

Algorithm 1 MCTS skeleton
1: procedure SEARCH
2:  ← NEW-TREE
3: 𝑛 ← ROOT-NODE()
4: while 𝑛 is not a terminal node do
5: GROW-TREE( , 𝑛)
6: 𝑛 ← BEST-CHILD(𝑛)
7: end while
8: end procedure

reward

Selection Expansion Rollout Backpropagation

Fig. 2: Four steps of GROW-TREE in MCTS [5]. Selection:
start from the root node and select successive explored nodes.
Expansion: Create a new node from unexplored actions
of the last selected node. Rollout: get the reward of the
new node by simulations to the end with random sampling.
Backpropagation: Update the tree using rollout results.

use value estimation and action probability to prioritize
empirically good directions. Each node maintains a value
estimation 𝑣𝑒𝑠𝑡(𝑠), obtained value 𝑣(𝑠), and the number of
visits 𝑁(𝑠). For 𝑠

𝑎
←←←←←←→ 𝑠′, we define the action probability

𝑝(𝑠, 𝑎), the number of visits 𝑁(𝑠, 𝑎) = 𝑁(𝑠′), and the state-
action value 𝑄(𝑠, 𝑎) = 𝜆𝑣(𝑠′)+(1−𝜆)𝑣𝑒𝑠𝑡(𝑠′), where 𝜆 ∈ [0, 1]
is an adaptive parameter that balance portions of the obtained
value and the value estimation. To mitigate the inaccuracy
of value estimation, 𝜆 increases as the search goes on.

Among the set of feasible actions (𝑠), we select the
next action 𝑎∗ ← argmin𝑎∈(𝑠)𝑈 (𝑠, 𝑎) with 𝜂 controlling the
degree of exploration:

𝑈 (𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝜂𝑝(𝑠, 𝑎)

√

𝑁(𝑠)
1 +𝑁(𝑠, 𝑎)

(1)

In backpropagation, every node on the evaluated path is
updated with the reward 𝑟:

𝑣(𝑠) =
𝑁(𝑠)𝑣(𝑠) + 𝑟
𝑁(𝑠) + 1

(2)

𝑁(𝑠) = 𝑁(𝑠) + 1 (3)

A direct value estimation function is often used to calculate
𝑣𝑒𝑠𝑡. Otherwise if a reward estimation 𝑟𝑒𝑠𝑡 is used, we update
𝑣𝑒𝑠𝑡 with the same rule as Equation 2.

IV. HIERARCHICAL PLANNING FRAMEWORK

A. Task Description
This paper focuses on one rigid body in a non-movable

rigid environment or no environment component.
A planner designed under this framework takes in:

1) Object properties: a rigid body  with known geom-
etry (for example, a mesh model), mass distribution
(center of mass and inertia matrix), and friction coeffi-
cients with environment 𝜇env and with the manipulator
𝜇mnp.

2) Environment with known geometries.
3) Robot model: The robot manipulates the object through

𝑁mnp predefined fingertip contacts. The collision mod-
els, forward and inverse kinematics, finger contact
models are known. We assume the robot makes non-
sliding and non-rolling contacts.

4) Start specification: object start pose 𝑥start ∈ 𝑆𝐸(3).
5) Goal specification: object goal region 𝑋goal ⊂ 𝑆𝐸(3).
It outputs an object configuration trajectory 𝑥(𝑡) and a

robot control trajectory 𝑢(𝑡).

B. Level 1: Planning Environment Contact Modes and Ob-
ject Trajectories

Level 1 is summarized in Algorithm 2, and visualized in
Figure 3 with a block reorientation example. It plans trajecto-
ries of environment contact modes and object configurations,
which are then passed to Level 2 for planning robot contacts
and further evaluated in Level 3. In the Level 1 selection
phase, we interleave the search over discrete environment
contact modes and continuous object configurations. When
a node is selected for expansion and rollout, an RRT method
replaces random rollouts to improve exploration efficiency.
The output path from the RRT rollout is added to the MCTS,
and is passed to Levels 2 and 3 for reward evaluation.

1) Selection — Interleaved Search Over Discrete and
Continuous space: The object configuration space SE(3)
is continuous, however, the presence of contacts partition
it into a complex space. It has many lower-dimensional
subspaces with zero probability to be randomly sampled
on. For instance, in Figure 3, all object poses for a cuboid
pivoting on an edge (mode 0011) lie in a 1D space in the 6D
object configuration space. The 1D space has zero probability
to be randomly sampled on. We use contact modes for
efficient guidance in planning motions in low-dimensional
manifolds. A contact mode describes the relative motion of
each contact in the system, which is either “maintain” (0) or
“separate” (1).

We define Level 1 state as 𝑠1 = (𝑥 ∈ SE(3), nodetype ∈
{mode, pose}), where 𝑥 is an object pose and nodetype stores
the type of the node.

The interleaved selection process is demonstrated in line
6-25 in Algorithm 2 and in Figure 3. For a pose node, the
action is to select a contact mode for it. The feasible actions
are 

(

𝑠1 = (𝑥, pose)
)

= (𝑥), where (𝑥) is the set
of kinematically feasible contact modes enumerated for an
object pose 𝑥 using the algorithm in [25]. The result from
assigning a contact mode to a pose node is a mode node.
For a mode node, the action is to select the next object pose
moving from the current object pose following the contact
mode. The available actions 

(

𝑠1 = (𝑥,mode)
)

comprise
choosing from its child nodes (explored object poses) or

1
2 3
4

0000
all contacts
remains

0011
1&2 remain;
3&4 separate

0111
1 remains;
others separate

Interleaved selection over
contact modes and object pose

RRT Search as
expansion and rollout

1001
2&5 remain; 1&6 separate

6
5 2

1

motion

Selection Expansion & Rollout Backpropagation

motion

1
2

5 (new)

6 (new)

...
more poses

...
more modes

...
more modes

pose node
mode node

1
2 3
4

0000 0011 0111

0000

...

...

...

RRT Search
Result

Add RRT result
to MCTS;
perform
backpropagation

1
2 3
4

0011

0000

0000 0111

...

...

0000
all contacts
remains

Fig. 3: Level 1 search visualized with a block reorientation example. In the selection phase, the block is selected to follow
contact mode 0011, leading to a 90-degree rotation at the edge of contact 1 and 2. Contact mode 0000 (all contacts maintain),
is then selected for expansion and rollout. The RRT finds a solution where the block rotates 90 on the edge of contact 2
and 5. New nodes from the RRT solution path are added to the MCTS. The reward is evaluated and backpropagated.

explore-new, which triggers the expansion and rollout phases
to explore new object poses.

The selection policy follows Equation 1. Action proba-
bilities 𝑝(𝑠, 𝑎) reflect preferences of modes or poses. For
example, if we prefer to exploit environment constraints to
reduce uncertainties as in [12]), we could design probability
functions that prioritize modes that maintain contacts.

2) Expansion: The expansion phase equals to explore-
new being selected for a mode node. It is a variant of
the progressive widening technique in MCTS for continuous
space [50], where we control the expansion rate with the
action probability of explore-new.

3) RRT as Rollout: In a traditional MCTS, a new node is
added by sampling an unexplored action and then evaluated
by sampling random rollouts to the end. As our search space
has a continuous part and is high-dimensional with sparse
solutions from lower-dimensional manifolds, it is unlikely
to get any useful results from a random trajectory rollout.
We replace the random rollout with an RRT search guided
by contact modes (line 17, Algorithm 2), modified based
on [31]. According to [51], “an RRT can be intuitively
considered as a Monte-Carlo way of biasing search”. Our
treatment fits the Monte-Carlo philosophy while improved
with better guidance towards the goal.

Here is a brief description of the RRT. Details can be
found in Appendix III. The mode node to expand provides
the RRT with the current object pose 𝑥current and selected
contact mode 𝑚selected. The RRT tries to reach 𝑥goal. It
outputs a trajectory where each point is an object pose
associated with a contact mode. In each iteration, we first
sample an object pose 𝑥𝑒𝑥𝑡𝑒𝑛𝑑 ∈ SE(3) and find its nearest
neighbor 𝑥𝑛𝑒𝑎𝑟. We then extend 𝑥𝑛𝑒𝑎𝑟 towards 𝑥extend. Each
extension is under the guidance of a contact mode. If 𝑥near

is 𝑥current, the contact mode should be 𝑚selected. Otherwise,
we enumerate all environment contact modes and filter them
using feasibility checks. New object poses are generated by
forward integration that follows each feasible contact mode
as close as possible to 𝑥𝑒𝑥𝑡𝑒𝑛𝑑 . If the RRT finds a solution to
𝑥goal within the maximum number of iterations, we add the
solution path after the expansion node in the Level 1 search
tree and proceed to Level 2 (line 19, Algorithm 2) to obtain a
reward. Otherwise, this process backpropagates zero reward
and no new node is added. The RRT is reused throughout
the entire lifespan of the MCTS.

Compared to [31], we can turn on the option to relax
the feasibility check for a contact mode to be “exist any
feasible robot contact” while the previous work maintain
robot contacts in its states, searching in a more complex
space of SE(3) × ℝ𝑁𝑚𝑛𝑝 . This relaxation could improve the
planning speed for some tasks as discussed in Section V.

C. Level 2: Planning Robot Contacts

Level 2 initiates in EVALUATE-REWARD in Level 1 (line 19
and 27, Algorithm 2). Level 2 takes in the object trajectory,
and output the best robot contact sequence. The best reward
will be passed back to Level 1. Algorithm 3 summarizes the
GROW-TREE process in Level 2 MCTS.

1) State and Action Representation: In Level 2 search
tree, each node is associated with a robot contact state
𝑠2 =

(

𝑡, {(𝑖, 𝑝𝑖)|𝑖 ∈ active fingers at 𝑡}
)

. This represents that
the robot makes contacts by specified active fingers at contact
locations {𝑝𝑖 ∈ ℝ3} on the object surface at timestep 𝑡. For
example, grasping an object at timestep 0 with the first and
third finger at locations (1, 0, 0) and (−1, 0, 0) can be written
as

(

0, (1, (1, 0, 0)), (3, (−1, 0, 0))
)

.

Algorithm 2 Level 1: Search Object Motion
1: procedure GROW-TREE-LEVEL-1( , startnode)
2: while resources left do
3: 𝑛 ← startnode
4: ⊳ Interleaved selection over pose and mode
5: while 𝑛 is not terminal do
6: if NODETYPE(𝑛) is pose then
7: ⊳ [Selection] next contact mode
8: (𝑛) ← feasible contact modes of 𝑛
9: 𝑎 ← SELECT((𝑛))

10: 𝑛 ← MODE-NODE(𝑎)
11: end if
12: if NODETYPE(𝑛) is mode then
13: ⊳ [Selection] next pose
14: (𝑛) ← CHILDREN-OF(𝑛) ∪ explore-new
15: 𝑎 ← SELECT((𝑛))
16: if 𝑎 is explore-new then ⊳ [Expansion]
17: path ← RRT-EXPLORE(𝑛) ⊳ [Rollout]
18: ATTACH( , path)
19: 𝑟 ← EVALUATE-REWARD(path) ⊳ To Level 2
20: BACK-PROPAGATE(𝑟, ) ⊳ [Backpropagation]
21: break loop
22: else
23: 𝑛 ← TO-NEXT-NODE(𝑎)
24: end if
25: end if
26: end while
27: 𝑟 ← EVALUATE-REWARD(n) ⊳ To Level 2
28: BACK-PROPAGATE(𝑟, ) ⊳ [Backpropagation]
29: end while
30: end procedure

Algorithm 3 Level 2: Search Robot Contacts
1: procedure GROW-TREE-LEVEL-2( , startnode)
2: while resources left do
3: 𝑛 ← startnode
4: while 𝑛 is not terminal do
5: sp(𝑛) ← SAMPLE-FEASIBLE-ACTIONS(n)
6: 𝑎 ← SELECT(sp(𝑛))
7: 𝑛 ← NEXT-NODE(𝑛, 𝑎)
8: end while
9: 𝑟 ← EVALUATE-REWARD(n) ⊳ To Level 3

10: BACK-PROPAGATE(𝑟, )
11: end while
12: end procedure

Each action 𝑎 =
(

𝑡𝑐 , {(𝑗, 𝑝𝑗)|𝑗 ∈ relocating fingers at 𝑡𝑐}
)

represents robot contact relocations, specified by relocat-
ing timestep 𝑡𝑐 , relocating fingers, and the contact points
they are relocating to {𝑝𝑗}. Continuing the last exam-
ple, if we choose to maintain the grasp until timestep
4, and then move the third finger to (0, 0, 1) and add
the fifth finger at (−1, 0, 0.5), the action is written as
(

4, (3, (0, 0, 1)), (5, (−1, 0, 0.5))
)

. The resulting new state is
(

4, (1, (1, 0, 0)), (3, (0, 0, 1)), (5, (−1, 0, 0.5))
)

.
Compared to the common practice of planning contacts for

every timestep [19], [47], we plans for contact relocations.
While the complexity of the search space does not change,
empirically in most tasks, this modification significantly
reduces the depth of the search tree and speeds up the
discovery of a solution (experiments in Section V, Figure 5).

2) Sampling and Pruning for Action Selection: If we
consider 100 object surface contact points, 4 fingers, and
a 10-step trajectory. The action space is 1004 ∗ 10 =
1, 000, 000, 000. Thus it is not practical to evaluate and
compare all actions. To mitigate this issue, we adopt action
sampling techniques that are efficient in non-enumerable
action space [52].

In Equation 1, we consider a subset of all available actions
sp(𝑠2) ⊂ (𝑠2). sp(𝑠2) includes all previously explored
actions and newly sampled actions. The newly sampled
actions are generated by first sampling the relocating timestep
𝑡𝑐 , and then which robot contact(s) to relocate to what
location(s) on the object surface. The relocating timestep 𝑡𝑐
is sampled in (𝑡, 𝑡𝑚𝑎𝑥], where 𝑡𝑚𝑎𝑥 is the maximum timestep
the current set of contacts can proceed to under the feasibility
check in Section IV-C.3. After 𝑡𝑐 is sampled, we sample a
robot contact relocation through rejection sampling. We first
find relocatable robot contacts by checking if the fingers left
satisfy the relocation conditions. Then we sample a feasible
new contact location for each relocating finger on the object
surface.

If the selected action is an explored action, we are perform-
ing the selection phase. If the selected action is a new action,
we are performing the expansion and rollout phase. We mix
the selection, expansion, and rollout using the same heuristic
function. However, one can also use different rollout policies
or use value estimation to completely replace the rollout.

3) Feasibility Check: To prune fruitless search directions,
we enforce Level 2 nodes and Level 1 RRT rollout nodes to
pass the feasibility check, including:

∙ Kinematic feasibility: whether there exist inverse kine-
matics solutions for the robot contact points

∙ Collision free: whether the robot links are collision-free
with the environment and the object

∙ Relocation feasibility: whether there exists a plan to
relocate from previous robot contacts to new contacts

∙ Force conditions: whether the chosen contact points
can fulfill the task dynamics, for example, we use a
quasistatic or quasidynamic model for our test tasks
with environment interactions, and force balance or force
closure conditions for in-hand manipulation.

∙ Other task-specific requirements may also be added.

D. Level 3: Path Evaluation and Control Optimization
Level 2 passes a full path including object motions and

robot contact sequence. Level 3, called in line 9, Algorithm
3, checks the feasibility and computes the robot controls 𝑢(𝑡).
Level 3 can take different methods as long as it provides the
reward and robot controls.

For example, if the task mechanics are quasi-static or
force-closure, as the timing does not matter on the opti-
mization side anymore, “timestep” becomes “step”. For each
step 𝑡, we could individually solve to check whether quasi-
static or force-closure solutions exist and output the robot
positions and optimal contact forces as the control 𝑢(𝑡),
which can potentially be executed using hybrid force velocity
control methods [53]. If full dynamics is required, we could

180°

Fig. 4: Scenarios for manipulation with extrinsic dexterity.
From left to right: Scenario 1, pick up a card: pick up a
thin card that cannot be directly grasped using two robot
contacts. Scenario 2, bookshelf : get a book among other
books out of a bookshelf using three robot contacts. Scenario
3, peg-out-of-hole: get a peg out of a tight hole using three
robot contacts (narrow gaps prevent direct grasps). Scenario
4, block flipping: flip the block 180 degrees in the table using
two robot contacts.

potentially use the path to be evaluated as a warm-start for
trajectory optimization methods [33], [54] to find the control
outputs and locally improve the trajectory.

For the resultant control trajectory 𝑢(𝑡), we compute the
reward 𝑟 and the estimations 𝑣𝑒𝑠𝑡 or 𝑟𝑒𝑠𝑡. There are two rules
for defining a reward function: 1) A feasible path should have
a positive reward. A non-feasible path should have a zero or
negative reward. It is preferred that the reward is in [0, 1].
2) There should be a term that regularizes the length of the
path. Otherwise, the search might never end.

V. EXAMPLES AND EXPERIMENTS

We implemented two task types: manipulation with ex-
trinsic dexterity and in-hand manipulation. In our code,
setting up new scenarios and adjusting search parameters
only require modification of one setup.yaml file.

A. Implementation
We use Dart [55] as the visualization tool and Bullet [56]

for collision detection. We include detailed setup require-
ments in Appendix I and more implementation details in
Appendix II.

1) Robot Model: We implemented two robot types.
Ball fingertips: Each fingertip is a sphere with workspace

limits as kinematic feasibility check. We check for collision
of the sphere and the environment. We use three vertices
of an equilateral triangle on the sphere perpendicular to the
contact normal to approximate a patch contact.

Dexterous Direct-drive Hand (DDHand): A DDHand has
two fingers. Each fingertip has two degrees of freedom for
planar translation and is equipped with a horizontal rod [57],
[58]. We provide analytical inverse kinematics model and use
line contact model as the fingertip contact model.

2) Task Mechanics: We implemented quasi-static, quasi-
dynamic and force closure models. For each timestep, we
solve a convex optimization problem to find if contact force
solutions exist (details in Appendix II-A.2).

3) Feasibility Checks: include task mechanics check, fin-
ger relocation force check (during relocation, it needs to
satisfy the task mechanics assuming the object is static),
kinematic feasibility check, and collision check.

Scenario 1 2 3 4

Solution found time (s) 5.1 11 1.2 7.5 5.9 17 4.6 10
Success rate 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Nodes in tree 108 59 165 33 110 152 813 27
Solution length 6.2 9.7 6.0 7.4 11 17.0 12 6.5
Travel distance ratio 1.1 1.4 1.0 1.2 1.1 1.8 1.8 1.2
Finger relocations 1.1 4.1 1.0 3.9 3.3 4.7 2.6 4.5
Env contact changes 2.4 2.9 2.0 2.7 4.6 4.5 3.2 4.7
Grasp centroid distance 0.2 0.5 0.9 1.1 0.6 0.4 0.3 0.9

TABLE I: Planning statistics for manipulation with extrinsic
dexterity: our method (left, bold), CMGMP (right).

4) Features and Rewards: We use features including
travel distance ratio (total object travel distance divided by
the start to goal distance), path size, robot contact change
ratio (number of finger contact changes divided by the path
length), and grasp centroid distance [59]. Given some feature
values as data points, we manually label the reward values,
favoring smaller object traveling distance, less number of
contact changes, and better grasp measures. Given the labeled
data, we fit a logistic function as the reward function.

5) Action Probability: In Level 1, in choosing the next
contact mode, the action probability prioritizes the same
contact mode as before:

𝑝
(

𝑠1 = (𝑥,mode), 𝑎
)

=

{

0.5 if 𝑎 = previous mode
0.5

#modes−1 else
(4)

In choosing the next configuration, we use a uniform distri-
bution among all the children plus the expansion action.

In Level 2, in choosing a timestep to relocate and the con-
tact points to relocate to, the action probability is calculated
using a weight function 𝑤(𝑠2, 𝑎)

𝑝(𝑠2, 𝑎) =
𝑤(𝑠2, 𝑎)

∑

𝑎′∈sp(𝑠2)𝑤(𝑠2, 𝑎′)
(5)

𝑤(𝑠2, 𝑎) encourages previous robot contacts to stay until 𝑡max:

𝑤(𝑠2, 𝑎) =

{

0.5 + 0.5
𝑡max−𝑡𝑐+1

if 𝑡𝑐 = 𝑡max
0.5

𝑡max−𝑡𝑐+1
else

(6)

6) Value Estimation: We only use value estimation in
Level 1. Each node has 𝑣𝑒𝑠𝑡 = 0.1 if any Level 2 search
can find a valid robot contact sequence for it.

7) Search Parameters: We let 𝜂 = 0.1 for both levels. We
set 𝜆 to 1 if a positive reward is found, otherwise 0.

B. Manipulation with Extrinsic Dexterity

We evaluate four examples in Figure 4. Each scenario is
implemented with ball fingertip model without workspace
limit and quasi-static mechanics. Additional scenarios are
demonstrated in the real robot experiments in Section V-D.

Table I shows the planning statistics from 100 runs for
each scenario, using a desktop with the Intel Core i9-10900K
3.70GHz CPU (also for all other statistics in this paper). As
our algorithm is anytime, we let the planner stop after 10
seconds and collect the results.

https://github.com/XianyiCheng/HiDex/blob/main/data/template_task/setup.yaml

2010 10010 20010 20020
10−2

100

102

0.02
0.07 0.13 0.140.16

1.2

9.5

89.5

Search Space Size

Pl
an

ni
ng

tim
e

(s
) Ours

w/o relocation selection

Fig. 5: Planning time (in log scale) with respect to search
space size for planning robot contacts for cube sliding. We
have search space size = candidate contactstrajectory size.

1) Ablation of Hierarchical Structure and MCTS: We
compare the results with CMGMP [31], which uses a single
RRT in searching for object motions and robot contacts.
For all scenarios, our method finds solutions faster. Since
the MCTS takes effect after a solution is found, the main
contribution in speed is from the hierarchical structure, which
decouples the search space of object poses and robot contacts
and enable faster solution discovery. Compared to CMGMP,
our method also finds solutions with smaller travel distances,
less finger relocation, and smaller grasp centroid distance, as
guided by the MCTS rewards.

2) Efficient Robot Contact Planning: Level 2 improves
robot contact planning by planning contact relocations, while
the common practice plans contacts for each timestep on
the trajectory [47], [19] (w/o relocation selection). In this
ablation study, we consider robot contact planning on a
straight line cube sliding trajectory with one allowable robot
contact. We run the planning under different numbers of
total timesteps and candidate object surface points. As shown
in Figure 5, the search space size grows exponentially for
both methods. The planning time of the common practice
also grows exponentially. As comparison, our modification
uses drastically smaller time. Our assumption is that this
modification aligns better with the nature of manipulation
— contact relocations are sparse compared to the timesteps
of the entire trajectory.

C. In-hand Manipulation

A robot can use its fingers to shift and reorient an object
to a desired pose within the hand. As the workspace of
fingertips is often limited to very small ranges, complex
motions are needed. In-hand manipulation demonstrate the
effective use of intrinsic dexterity of the robot itself.

1) Different Hand Configurations: We test on three hand
setups and object models from the YCB dataset [60]. Here
we do not consider the collision of finger links. If needed,
robot link models should be provided. For inherently safer
motions, we require every motion to have force balance or
force closure solutions. Table II shows the statistics for each
task with 100 runs of randomized start and goal object poses.
Without any training or tuning, our framework achieves a

high planning success rate within seconds. Point sampling
on the object surface ensures consistent performance for
complex object shapes, demonstrated by the ability to plan
contacts inside concave objects, such as the mug and the
power drill, as shown in the video.

2) Add an Auxiliary Goal: While our framework is
designed for object poses as goal specifications, here we
demonstrate that it is possible to incorporate auxiliary refer-
ences, like fingertip locations. We first define 𝑑𝑐 , the average
robot contact distance to the goal divided by an empirical
characteristic length (for example, the object length). We fit
a new reward function that prefers small 𝑑𝑐 . We then bias the
action probability to sample contact locations that are closer
to the goal through 𝑤(𝑠2, 𝑎) in Equation 12:

𝑤(𝑠2, 𝑎) =

{

0.5 + 0.5
𝑡max−𝑡𝑐+1

𝑝𝑟(𝑑) if 𝑡𝑐 = 𝑡max
0.5

𝑡max−𝑡𝑐+1
𝑝𝑟(𝑑) else

(7)

We compare planners with and without additional goal fin-
gertip location for 100 reorientation trials with a hammer and
a mug using a 5-finger hand. Each trial has a randomized start
pose, goal pose, and goal fingertip locations. As Table III
shows, the planner with the additional goal specification
results in smaller “Final finger distance”, but more finger
relocations are needed. Other features remain less affected.
Due to potential conflicts from the primary goal and trade-
offs from other reward terms, there is no guarantee to achieve
good alignment with the auxiliary goal.

D. Robot Experiments
We test 8 new scenarios on a dexterous direct drive hand

(DDHand) [57] and a configurable array of soft delta robots
(delta array) [61]. For both systems, we perform open-loop
execution (no object pose estimation or contact feedback).
Given a planned fingertip trajectory, we compute the robot
joint trajectory using inverse kinematics and execute it with
joint position control. The object start position errors are
calibrated within 1mm for the DDHand and 2cm for the delta
array. Figure 7 and Figure 6 show the keyframes. The full
recordings are in the supplementary video.

1) DDHand: We show that the planner enables the DD-
Hand to use intrinsic and extrinsic dexterity. For example, in
occluded grasp, the fixed green block and the table prevent a
direct grasp. The DDHand uses three steps: pivot the object
on the corner; use one finger to hold the object; move the
other finger to the other side form a grasp. In upward peg-
in-hole, without a grasp, gravity will cause the peg to fall.
But the walls of the hole prevent the fingers from getting
in while grasping the object. The DDHand uses one finger
to press the peg against the hole — using the wall as an
external finger to grasp. The other robot finger then relocate
to push the peg from the bottom. The pressing finger also
releases to create space for the peg to be pushed in.

2) Delta Array: We test on 4 scenarios: planar passing
of a cuboid with 2 or 6 separated (no workspace overlap)
fingers, planar reorientation on a table with 5 or 6 ad-
jacent (have workspace overlap) fingers. Due to the small

Hand Type 3 fingers 4 fingers 5 fingers

Object tuna fish can b lego duplo cylinder apple clamp mug power drill banana b toy airplane hammer c lego duplo

6 Coffee can

V1: Master Chef

V2: Maxwell House

7
Starkist Tuna Fish

can

8 Pringles Chips can

12
Plastic strawberry

(x2)

13 Plastic apple

14 Plastic lemon

45 Wood block

46

Small clamp

Medium clamp

Large clamp

Very large clamp

47 Power Drill

V1: Model LDX172C

V2: Model BDCD8C

30 Wine glass

31 Mug

32 Skillet

V1: Bronze body and handle

V2: Black body and handle

45 Wood block

46

Small clamp

Medium clamp

Large clamp

Very large clamp

47 Power Drill

V1: Model LDX172C

V2: Model BDCD8C

9
French's Mustard

bottle

10 Tomato Soup can

11 Plastic banana

39 Hammer

40

Screw (x2)

Medium nail (x2)

Long nail (x2)

41

Plastic bolt (x2)

Plastic nut (x2)

Solution found time(s) 12.0 ± 15.3 4.9 ± 5.5 2.8 ± 4.5 0.3 ± 0.2 3.9 ± 4.9 0.6 ± 0.8 3.9 ± 4.7 0.6 ± 0.7 0.6 ± 0.6 0.6 ± 0.5 0.7 ± 1.1
Success rate 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Nodes in Tree 56 ± 52 33 ± 15 50 ± 25 69 ± 29 69 ± 51 61 ± 29 72 ± 38 68 ± 29 70 ± 33 71 ± 30 63 ± 26
Solution length 10.7 ± 3.3 9.1 ± 2.8 8.2 ± 2.5 8.4 ± 2.1 9.1 ± 3.1 7.9 ± 2.4 9.7 ± 3.0 8.4 ± 2.3 8.4 ± 2.4 8.7 ± 2.3 8.4 ± 2.4
Travel distance ratio 1.5 ± 0.4 1.3 ± 0.3 1.1 ± 0.1 1.0 ± 0.1 1.1 ± 0.2 1.0 ± 0.1 1.1 ± 0.2 1.0 ± 0.1 1.0 ± 0.1 1.0 ± 0.1 1.0 ± 0.1
Finger relocation 3.1 ± 1.8 3.1 ± 1.9 3.0 ± 1.7 4.3 ± 1.7 3.4 ± 2.2 3.8 ± 1.7 3.7 ± 2.1 4.3 ± 1.8 4.2 ± 1.9 4.3 ± 1.8 4.4 ± 1.8

TABLE II: Planning statistics for in-hand manipulation for different finger arrangements (workspaces shown by colored
boxes) and objects (images from YCB dataset[60], except for the cylinder).

With additional goal Without
hammer mug hammer mug

Solution found time(s) 0.89 0.50 0.64 0.35
Success rate 1.0 1.0 1.0 1.0
Nodes in tree 97 82 92 78
Solution length 8.7 8.2 8.5 8.0
travel distance ratio 1.03 1.04 1.03 1.04
Finger relocation 7.4 5.7 4.9 4.1
Final fingertip distance 0.88 0.70 1.41 0.93

TABLE III: Planning statistics for a 5-finger hand reorienting
a hammer and a mug with and without additional goal
specification of robot contact locations.

Fig. 6: Keyframes of DDHand experiments. From top to
bottom: cube reorientation, occluded grasp, sideway peg-in-
hole, upward peg-in-hole. The locations of the fingertips are
marked with red circles.

workspace of a delta robot (a cylinder with a 2 cm radius
and 6cm height), many contact changes are required to
accomplish the tasks.

VI. DISCUSSION

This paper proposes a hierarchical framework for plan-
ning dexterous robotic manipulation. It facilitates efficient
searches across complex spaces, generation of diverse ma-
nipulation skills, utilization of expert knowledge, and adapt-
ability for various scenarios. This method has potentials for

Fig. 7: Keyframes of the delta array experiments. From top
to bottom: 2-finger planar block passing, 6-finger planar
block passing, 6-finger planar reorientation, 5-finger planar
reorientation for a long block.

the automation of wide-ranging manipulation applications,
such as functional grasps, caging, forceful manipulation, and
mobile and aerial manipulation.

Our framework design allows future extensions to incor-
porate trajectory optimization and reinforcement learning.
By adding dynamic trajectory optimization [62] in Level
3, we could potentially plan dynamic manipulation and
smooth object trajectories. Incorporating learning methods
is also a future direction. Our method obtains diverse skills
with simple hand-coded action policies and rewards. Can
past planning experience be leveraged to learn universal
contact policies for general manipulation and enhance and
be enhanced by reinforcement learning methods?

There are two major limitations when evaluating applica-
bility. First, fast IK methods for robot fingertips are required,
which is not direct for tendon-driven or soft robot hands.
Second, this framework uses fingertips only, meaning that
other part of the robot bodies cannot be used for manipula-
tion. Planning finger rolling is also not supported. We plan
to incorporate whole-hand manipulation concepts in future
developments to fully leverage robot dexterity.

REFERENCES

[1] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory op-
timization of rigid bodies through contact,” The International Journal
of Robotics Research, vol. 33, no. 1, pp. 69–81, 2014.

[2] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. Mc-
Grew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray et al.,
“Learning dexterous in-hand manipulation,” The International Journal
of Robotics Research, vol. 39, no. 1, pp. 3–20, 2020.

[3] Y. Hou, Z. Jia, and M. T. Mason, “Fast planning for 3d any-pose-
reorienting using pivoting,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 1631–1638.

[4] K. M. Lynch and M. T. Mason, “Stable pushing: Mechanics, control-
lability, and planning,” The international journal of robotics research,
vol. 15, no. 6, pp. 533–556, 1996.

[5] M. Świechowski, K. Godlewski, B. Sawicki, and J. Mańdziuk, “Monte
Carlo tree search: A review of recent modifications and applications,”
Artificial Intelligence Review, pp. 1–66, 2022.

[6] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” 1998.

[7] M. T. Mason, “Mechanics and planning of manipulator pushing
operations,” The International Journal of Robotics Research, vol. 5,
no. 3, pp. 53–71, 1986.

[8] Y. Aiyama, M. Inaba, and H. Inoue, “Pivoting: A new method of
graspless manipulation of object by robot fingers,” in Proceedings of
1993 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS ’93), vol. 1, 1993, pp. 136–143 vol.1.

[9] A. Holladay, R. Paolini, and M. T. Mason, “A general framework
for open-loop pivoting,” in 2015 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2015, pp. 3675–3681.

[10] X. Cheng, Y. Hou, and M. T. Mason, “Manipulation with suction cups
using external contacts,” in Robotics Research: The 19th International
Symposium ISRR. Springer, 2022, pp. 692–708.

[11] Y. Maeda, T. Nakamura, and T. Arai, “Motion planning of robot finger-
tips for graspless manipulation,” in IEEE International Conference on
Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, vol. 3.
IEEE, 2004, pp. 2951–2956.

[12] C. Eppner, R. Deimel, J. Alvarez-Ruiz, M. Maertens, and O. Brock,
“Exploitation of environmental constraints in human and robotic
grasping,” The International Journal of Robotics Research, vol. 34,
no. 7, pp. 1021–1038, 2015.

[13] C. Eppner and O. Brock, “Planning grasp strategies that exploit
environmental constraints,” in 2015 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2015, pp. 4947–4952.

[14] J. Z. Woodruff and K. M. Lynch, “Planning and control for dynamic,
nonprehensile, and hybrid manipulation tasks,” in 2017 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2017,
pp. 4066–4073.

[15] I. Mordatch, Z. Popović, and E. Todorov, “Contact-invariant opti-
mization for hand manipulation,” in Proceedings of the ACM SIG-
GRAPH/Eurographics symposium on computer animation. Euro-
graphics Association, 2012, pp. 137–144.

[16] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex
behaviors through contact-invariant optimization,” ACM Transactions
on Graphics (TOG), vol. 31, no. 4, pp. 1–8, 2012.

[17] J. Sleiman, J. Carius, R. Grandia, M. Wermelinger, and M. Hutter,
“Contact-implicit trajectory optimization for dynamic object manip-
ulation,” in 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2019, pp. 6814–6821.

[18] F. H. N. Doshi and A. Rodriguez, “Hybrid differential dynamic
programming for planar manipulation primitives,” in ICRA, 2020.

[19] B. Aceituno-Cabezas and A. Rodriguez, “A global quasi-dynamic
model for contact-trajectory optimization in manipulation,” 2020.

[20] M. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum,
“Differentiable physics and stable modes for tool-use and manipulation
planning.” in Robotics: Science and Systems, vol. 2, 2018.

[21] Y. C. Nakamura, D. M. Troniak, A. Rodriguez, M. T. Mason, and N. S.
Pollard, “The complexities of grasping in the wild,” in 2017 IEEE-RAS
17th International Conference on Humanoid Robotics (Humanoids).
IEEE, 2017, pp. 233–240.

[22] J. Xiao and X. Ji, “Automatic generation of high-level contact state
space,” The International Journal of Robotics Research, vol. 20, no. 7,
pp. 584–606, 2001.

[23] X. Ji and J. Xiao, “Planning motions compliant to complex contact
states,” The International Journal of Robotics Research, vol. 20, no. 6,
pp. 446–465, 2001.

[24] M. T. Mason, Mechanics of Robotic Manipulation. Cambridge, MA,
USA: MIT Press, 2001.

[25] E. Huang, X. Cheng, and M. T. Mason, “Efficient contact mode
enumeration in 3d,” in Workshop on the Algorithmic Foundations of
Robotics, 2020.

[26] P. Tang and J. Xiao, “Automatic generation of high-level contact
state space between 3d curved objects,” The International Journal
of Robotics Research, vol. 27, no. 7, pp. 832–854, 2008.

[27] J. C. Trinkle and J. J. Hunter, “A framework for planning dexterous
manipulation,” in Proceedings. 1991 IEEE International Conference
on Robotics and Automation, 1991, pp. 1245–1251 vol.2.

[28] M. Yashima, Y. Shiina, and H. Yamaguchi, “Randomized manipulation
planning for a multi-fingered hand by switching contact modes,” in
2003 IEEE International Conference on Robotics and Automation
(Cat. No. 03CH37422), vol. 2. IEEE, 2003, pp. 2689–2694.

[29] S. Chen, A. Wu, and C. K. Liu, “Synthesize dexterous nonprehensile
pregrasp for ungraspable objects,” arXiv preprint arXiv:2305.04654,
2023.

[30] X. Cheng, E. Huang, Y. Hou, and M. T. Mason, “Contact mode guided
sampling-based planning for quasistatic dexterous manipulation in 2d,”
IEEE International Conference on Robotics and Automation, 2021.

[31] ——, “Contact Mode Guided Motion Planning for Quasidynamic
Dexterous Manipulation in 3D,” in 2022 International Conference on
Robotics and Automation (ICRA), 2022, pp. 2730–2736.

[32] J. Liang, X. Cheng, and O. Kroemer, “Learning Preconditions of
Hybrid Force-Velocity Controllers for Contact-Rich Manipulation,”
Conference on Robot Learning, 2022.

[33] T. Pang, H. Suh, L. Yang, and R. Tedrake, “Global Planning for
Contact-Rich Manipulation via Local Smoothing of Quasi-dynamic
Contact Models,” arXiv preprint arXiv:2206.10787, 2022.

[34] C. Chen, P. Culbertson, M. Lepert, M. Schwager, and J. Bohg,
“Trajectotree: Trajectory optimization meets tree search for planning
multi-contact dexterous manipulation,” in 2021 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2021, pp. 8262–8268.

[35] E. Huang, X. Cheng, Y. Mao, A. Gupta, and M. T. Mason, “Autogen-
erated manipulation primitives,” The International Journal of Robotics
Research, p. 02783649231170897, 2023.

[36] G. Lee, T. Lozano-Pérez, and L. P. Kaelbling, “Hierarchical planning
for multi-contact non-prehensile manipulation,” in 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2015, pp. 264–271.

[37] B. Aceituno and A. Rodriguez, “A Hierarchical Framework for Long
Horizon Planning of Object-Contact Trajectories,” in 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2022, pp. 189–196.

[38] W. Zhou and D. Held, “Learning to grasp the ungraspable with
emergent extrinsic dexterity,” in ICRA 2022 Workshop: Reinforcement
Learning for Contact-Rich Manipulation, 2022.

[39] W. Zhou, B. Jiang, F. Yang, C. Paxton, and D. Held, “Learning hybrid
actor-critic maps for 6d non-prehensile manipulation,” arXiv preprint
arXiv:2305.03942, 2023.

[40] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural
networks and tree search,” nature, vol. 529, no. 7587, pp. 484–489,
2016.

[41] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel et al., “Mastering
chess and shogi by self-play with a general reinforcement learning
algorithm,” arXiv preprint arXiv:1712.01815, 2017.

[42] B. Kartal, E. Nunes, J. Godoy, and M. Gini, “Monte carlo tree search
for multi-robot task allocation,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 30, no. 1, 2016.

[43] T. Ren, G. Chalvatzaki, and J. Peters, “Extended tree search for robot
task and motion planning,” arXiv preprint arXiv:2103.05456, 2021.

[44] E. Huang, Z. Jia, and M. T. Mason, “Large-scale multi-object re-
arrangement,” in 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 2019, pp. 211–218.

[45] Y. Labbé, S. Zagoruyko, I. Kalevatykh, I. Laptev, J. Carpentier,
M. Aubry, and J. Sivic, “Monte-carlo tree search for efficient visu-
ally guided rearrangement planning,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 3715–3722, 2020.

[46] L. Amatucci, J.-H. Kim, J. Hwangbo, and H.-W. Park, “Monte carlo
tree search gait planner for non-gaited legged system control,” in 2022

https://arxiv.org/abs/2103.04931
https://arxiv.org/abs/2103.04931
https://www.cs.csustan.edu/~xliang/Courses/CS4710-21S/Papers/06%20RRT.pdf
https://www.cs.csustan.edu/~xliang/Courses/CS4710-21S/Papers/06%20RRT.pdf
https://ieeexplore.ieee.org/abstract/document/9811872
https://ieeexplore.ieee.org/abstract/document/9811872
https://arxiv.org/abs/2206.12728
https://arxiv.org/abs/2206.12728
https://arxiv.org/abs/2206.10787
https://arxiv.org/abs/2206.10787
https://arxiv.org/abs/2206.10787
https://ieeexplore.ieee.org/document/9981862
https://ieeexplore.ieee.org/document/9981862

International Conference on Robotics and Automation (ICRA), 2022,
pp. 4701–4707.

[47] H. Zhu and L. Righetti, “Efficient Object Manipulation Planning with
Monte Carlo Tree Search,” arXiv preprint arXiv:2206.09023, 2022.

[48] N. C. Dafle, A. Rodriguez, R. Paolini, B. Tang, S. S. Srinivasa,
M. Erdmann, M. T. Mason, I. Lundberg, H. Staab, and T. Fuhlbrigge,
“Extrinsic dexterity: In-hand manipulation with external forces,” in
2014 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2014, pp. 1578–1585.

[49] G. M. B. Chaslot, M. H. Winands, and H. J. van Den Herik, “Parallel
monte-carlo tree search,” in Computers and Games: 6th International
Conference, CG 2008, Beijing, China, September 29-October 1, 2008.
Proceedings 6. Springer, 2008, pp. 60–71.

[50] J. Lee, W. Jeon, G.-H. Kim, and K.-E. Kim, “Monte-carlo tree search
in continuous action spaces with value gradients,” in Proceedings of
the AAAI conference on artificial intelligence, vol. 34, no. 04, 2020,
pp. 4561–4568.

[51] S. M. LaValle, “About RRT,” http://lavalle.pl/rrt/about.html.
[52] T. Hubert, J. Schrittwieser, I. Antonoglou, M. Barekatain, S. Schmitt,

and D. Silver, “Learning and planning in complex action spaces,” in
International Conference on Machine Learning. PMLR, 2021, pp.
4476–4486.

[53] Y. Hou and M. T. Mason, “Robust execution of contact-rich motion
plans by hybrid force-velocity control,” in 2019 International Confer-
ence on Robotics and Automation (ICRA). IEEE, 2019, pp. 1933–
1939.

[54] T. A. Howell, S. L. Cleac’h, K. Tracy, and Z. Manchester, “Calipso:
A differentiable solver for trajectory optimization with conic and
complementarity constraints,” arXiv preprint arXiv:2205.09255, 2022.

[55] J. Lee, M. X. Grey, S. Ha, T. Kunz, S. Jain, Y. Ye, S. S. Srinivasa,
M. Stilman, and C. K. Liu, “Dart: Dynamic animation and robotics
toolkit,” Journal of Open Source Software, vol. 3, no. 22, p. 500, 2018.

[56] E. Coumans and Y. Bai, “Pybullet, a python module for physics sim-
ulation for games, robotics and machine learning,” http://pybullet.org,
2016–2019.

[57] A. Gupta, Y. Mao, A. Bhatia, X. Cheng, J. King, Y. Hou, and
M. T. Mason, “Extrinsic Dexterous Manipulation with a Direct-drive
Hand: A Case Study,” in 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2022, pp. 4660–4667.

[58] A. Bhatia, A. M. Johnson, and M. T. Mason, “Direct drive hands:
Force-motion transparency in gripper design,” in Robotics: science
and systems, 2019.

[59] M. A. Roa and R. Suárez, “Grasp quality measures: review and
performance,” Autonomous robots, vol. 38, no. 1, pp. 65–88, 2015.

[60] B. Calli, A. Singh, J. Bruce, A. Walsman, K. Konolige, S. Srini-
vasa, P. Abbeel, and A. M. Dollar, “Yale-cmu-berkeley dataset for
robotic manipulation research,” The International Journal of Robotics
Research, vol. 36, no. 3, pp. 261–268, 2017.

[61] S. Patil, T. Tao, T. Hellebrekers, O. Kroemer, and F. Z. Temel, “Linear
Delta Arrays for Dexterous Distributed Manipulation,” arXiv preprint
arXiv:2206.04596, 2022.

[62] K. Tracy, T. A. Howell, and Z. Manchester, “Differentiable col-
lision detection for a set of convex primitives,” arXiv preprint
arXiv:2207.00669, 2022.

[63] Y.-H. Liu, “Qualitative test and force optimization of 3-d frictional
form-closure grasps using linear programming,” IEEE Transactions
on Robotics and Automation, vol. 15, no. 1, pp. 163–173, 1999.

https://arxiv.org/abs/2206.09023
https://arxiv.org/abs/2206.09023
http://lavalle.pl/rrt/about.html
http://lavalle.pl/rrt/about.html
https://proceedings.mlr.press/v139/hubert21a.html
http://pybullet.org
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9981569
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9981569
https://arxiv.org/abs/2206.04596
https://arxiv.org/abs/2206.04596
https://arxiv.org/abs/2207.00669
https://arxiv.org/abs/2207.00669

APPENDIX I
SETTING UP NEW SCENARIOS

In this section, we provide an overview of what are
required when setting up new scenarios. Please check our
code and Appendix II for the actual implementation.

A. Applicability

This framework can be considered for the tasks of ma-
nipulating a single rigid body object in a rigid environment.
Environment components must be fixed and not movable. It
can also be used when there is no environment component
(in-hand manipulation). We need known models of the
object, the environment, and the robot.

The robot used to manipulate the object needs to have
known collision models, and forward and inverse kinematics.
The only parts that can be used to manipulate the object are
the defined “fingertips” on the robot.

B. Setup a new robot/hand

Setting up a new robot is the most complicated part.
Specifically for implementation in our C++ code, a new
class need to be written to inherit a pre-defined abstract class
ROBOTTEMPLATE. The user need to fill some specific pure
virtual functions that covers the following aspects.

1) Contact force models for fingertips: We use the point
contact model for kinematics. However, as the force model
for point contact might be too limited, we allow the use of
other contact force models. The contact force models that
currently exist in our implementation includes:

∙ Point contact
∙ Patch contact: we first approximate the fingertips using

spheres centered at the point contact locations. The
radius of the spheres should approximate the radius of
the contact patch for each fingertip. We approximate the
patch contact using three point contacts at vertices of an
equilateral triangle that is perpendicular to the contact
normal and on the sphere.

∙ Line contact: we approximate the line contact model by
two point contacts on twp ends of the line segment.

2) Forward and inverse kinematics for fingertips: The
users need to provide the forward and inverse kinematics
for the fingertips.

Given the FK and IK model, we precompute the
workspace for each fingertip. For general robot hands, we
first sample joint angles to get the fingertip points in the
workspace through forward kinematics, and then compute
the convex hulls. While hands might differ, we estimate this
process takes about seconds (with C++ implementation).

3) Robot collision model: The users need to provide
the collision model of the robot or the fingertips. If it is
unlikely for the robot links to collide with the object or
the environment, it is be okay to only provide the collision
shape for the fingertips, which will make the computation
much faster. Otherwise, the user could simply provide a robot
URDF model.

4) Contact relocation planner (optional): A contact relo-
cation planner is required for checking whether a collision-
free path exists for a finger to relocate to another contact
location.

5) Contact sampling on the object surface (optional): It
is best that each fingertip are relatively independent on the
kinematic side. If not, our random sampling of robot contacts
on the object surface might have a very high rejection rate
(> 90%). In this case, we need the user to provide a method
for the specific robot in order to more efficiently sample robot
contacts on the object surface.

6) Trajectory optimizer (optional): For the robots that
are under-actuated (like wheeled robots), the users need to
provide Level 3 a trajectory optimizer that finds feasible
object states, robot states, and robot controls given Level
2 outputs as warm-start trajectories.

C. Setup a new task type
After setting up the new robot, we need to enable the robot

to do a certain type of tasks. Two major things to consider
are task mechanics and task parameters for planning.

1) Task Mechanics: Task mechanics include the specific
requirements and dynamical model required by the task. Do
we have to fully exploit the dynamic property of the system?
If yes, we need to have a good trajectory optimization
algorithm for the manipulation system in Level 3 to ensure
the solutions are feasible. If the task dynamics do not involve
the integration of velocity and the robot is fully actuated,
it is not necessary to provide a trajectory optimization
method in Level 3. In these cases, the user only needs to
write a function task-dynamics(object pose, object

velocity, contact info, ...) that solves a one-step
optimization problem. Examples include quasi-static, quasi-
dynamic, closure methods, planar pushing, etc.

2) Design choices: A new task type requires several
design choices to be made and some search parameters to be
tuned. Once the choices are made, changing environments
and objects in the same task type should not require more
tuning. According to our experience, making designs and
tuning parameters are relatively low-effort. We have found
that the planner is not sensitive to specific numerical values
for parameters.

The design choices include task features, action probability
design for Level 1 and 2, reward design, and value estimation
design for Level 1 and 2.

Task features are used in the action probability and re-
ward. Basic features are path length in MCTS, number of
robot contact relocations, and object travel distance. Task-
dependent features like grasp measures or environment con-
tact changes can be added to encourage specific behaviors
like better grasps and less environment contact switches.
For generality, it is important to normalize the features by
ensuring similar values for desired behaviors across different
environments and objects.

There are three action probability functions we need to
define: (1) select a contact mode in Level 1, (2) select
a child (configuration node) for a mode node in Level 1,

and (3) select (time to relocate, contacts to relocate to) in
Level 2. For (1), we often encourage the use of the same
contact mode as the previous one. For (2), we currently
mostly use a uniform distribution. For (3), we would like to
encourage relocating when the contacts are not feasible the
next timestep. However, the definition of these probabilities
is entirely up to the user.

To design the reward function, we use a simple approach
that requires no tuning. Given some feature values as data
points, we first manually label their reward values between 0
to 1 through human intuition. Next, we fit a logistic function
to these data points as the reward function.

Manually value estimation is very flexible. The value
estimation in our method is often used to encourage the
search to visit a node that has been visited but has not found
any positive reward. For example, on the way to the goal
pose, if an object pose is reachable through a sequence of
contacts (check by Level 2), we can assign 0.1 as its value
estimation. Our design principle is to give a small number
to any node that is more likely to find a solution than others.

3) Parameters: The search parameters include MCTS
exploration rates 𝜂1, 𝜂2 in Level 1 and 2. Adaptive parameter
for value estimation 𝜆. In all of our experiments, we let
𝜂1 = 0.1, 𝜂2 = 0.1. We let 𝜆 = 0 if a positive reward has not
been found and otherwise 𝜆 = 1. While tuning the parameters
may slightly improve the performance for specific tasks, we
suspect that most of the time this is not a must. However,
𝜆 might need some tuning if one day we have better value
estimations, like using learned functions.

D. Setup a new environment
If using our preset robots and tasks, the users can eas-

ily setup new environments and objects in one file called
setup.yaml.

When setting up a model for a new environment, it is
usually adequate to use primitive geometries such as cuboids,
cylinders, and spheres in the simulation environment. The
users need to specify the shape parameters and the locations
of the primitive shapes.

E. Setup a new object
For a new object, the users need to provide the object

mesh or specify the primitive shape. Surface points will be
automatically uniformly sampled on the mesh. Each point
(p,n) is represented by its location (𝑝 ∈ 𝑅3) and its contact
normal (𝑛 ∈ 𝑆3) in the object frame. It is usually sufficient
to sample about 100 points. The computation is usually in
milliseconds.

The user also need to provide the object mass, ob-
ject inertia, and friction coefficients for robot-object and
environment-object contacts.

For each new object and environment, the RRT parameters
might need some changes, including the range of object po-
sitions, goal biased sampling probability, unit extend length,
and the weight for rotation for the distance calculation. The
RRT parameters does not require careful tuning, as long
as they roughly reflect the task requirement. For example,

the weight for rotation is good to be set to 1 if the object
bounding box range is between 0.1 - 10 and rotation and
translation are roughly of equal importance. If the object
orientation is not important at all, the weight is good to be
set to 0.01 to 0.1. The unit extend length should be larger
if the object start and goal are very far from each other,
otherwise the planner will be slow. And it should be smaller
if the user expect many different maneuvers required for the
task.

Extra note: to avoid numerical issues, we usually scale
the whole system such that the average length of the object
bounding box is in the range of 1 - 10.

APPENDIX II
EXPERIMENT DETAILS

This section includes the details of the experiments in this
paper. The first two are pure planning experiments. The latter
two are robot experiments.

A. Manipulation with Environment Interactions
1) Robot model: We consider the robots as free-flying

balls, meaning that we do not check for kinematic feasibility
but do check for collision of the balls and the environment.
For the contact force model, we use the patch contact model,
described in Appendix I-B.

2) Task mechanics: We use quasi-static or quasi-dynamic
models. For each timestep, we solve a convex programming
problem to find if there exists a solution for contact force 𝜆𝑐
to satisfy the force conditions. The problem is formulated as
follows:

min
𝜆

‖𝜖𝜆𝑇 𝜆‖
s.t. quasistatic or quasidynamic condition

(8)

where 𝜖𝜆𝑇 𝜆 is a regularization term on the contact forces.
The quasi-static condition requires the object to be under

static force balance for a selected contact mode
[

𝐺1ℎ1, 𝐺2ℎ2,…
]

⋅
[

𝜆1, 𝜆2,…
]𝑇 + 𝐹external = 0 (9)

where
[

𝜆1, 𝜆2,…
]𝑇 are the magnitudes of forces along active

contact force directions
[

ℎ1, ℎ2,…
]𝑇 determined by contact

modes.
[

𝐺1, 𝐺2,…
]𝑇 are the contact grasp maps. 𝐹external

includes other forces on the object, such as gravity and other
applied forces.

Quasidynamic assumption relaxes the requirement for
objects to be in force balance, allowing short periods of
dynamic motions. We assume accelerations do not integrate
into significant velocities. In numerical integration, the object
velocity from the previous timestep is 0. The equations of
motions become:

𝑀𝑜�̇�𝑜 =
[

𝐺1ℎ1, 𝐺2ℎ2,…
]

⋅
[

𝜆1, 𝜆2,…
]𝑇 + 𝐹external (10)

In discrete time, the object acceleration �̇�𝑜 can be written
as 𝑣𝑜

ℎ , where ℎ is the step size. The object velocity 𝑣𝑜
is computed by solving the constrained velocity from the
current pose to the goal pose under a contact mode.

3) Feasibility Checks:
∙ Task mechanics check: is passed if there exist a solution

for Equation 8.
∙ Finger relocation check: during relocation, the non-

relocating robot contacts and environment contacts must
also satisfy the task mechanics, assuming the object has
zero velocity.

∙ Collision check: the spheres must not collide with the
environment.

4) Features: We manually designed the features, as shown
in Table IV.

Feature Description

Path size node depth in the Level 1 tree
Object travel distance ratio total travel distance

𝑑𝑖𝑠𝑡(𝑥start ,𝑥goal)

Robot contact change ratio number of finger contact changes
number of fingers

Number of environment contact changes -
Grasp centroid distance 𝑑𝑖𝑠𝑡(𝑐𝑐𝑜𝑛𝑡𝑎𝑐𝑡, 𝑐𝑔𝑒𝑜)

TABLE IV: Features for Manipulation with Environment
Interactions. 𝑐𝑐𝑜𝑛𝑡𝑎𝑐𝑡: the centroid of all contact points; 𝑐𝑔𝑒𝑜:
the geometric center of the object.

5) Action Probability: In Level 1, in choosing the next
contact mode, we design the action probability to prioritize
choosing the contact mode the same as before:

𝑝
(

𝑠1 = (𝑥,mode), 𝑎
)

=

{

0.5 if 𝑎 = previous mode
0.5

#modes−1 else
(11)

In Level 1, in choosing the next configuration, we let
𝑝
(

𝑠1 = (𝑥, config), 𝑎
)

be a uniform distribution for all the
children and explore-new

In Level 2, in choosing a timestep to relocate and the
contact points to relocate, the action probability is calculated
using a weight function 𝑤(𝑠2, 𝑎) designed for each action in
sp(𝑠2):

𝑝(𝑠2, 𝑎) =
𝑤(𝑠2, 𝑎)

∑

𝑎′∈sp(𝑠2)𝑤(𝑠2, 𝑎′)
(12)

The manually designed weight function 𝑤(𝑠2, 𝑎) prefers to
let the previous robot contacts stay as long as possible:

𝑤(𝑠2, 𝑎) =

{

0.5 + 0.5
𝑡max−𝑡𝑐+1

if 𝑡𝑐 = 𝑡max
0.5

𝑡max−𝑡𝑐+1
else

(13)

6) Reward Design: We use all the features in Table IV
and follow the logistic function fitting procedure as described
in Appendix I-C.2.

7) Value Estimation: We only use value estimation for
Level 1 nodes. Each node has 𝑣𝑒𝑠𝑡 = 0.1 if any subsequent
Level 2 search is able to proceed past that node. For all Level
2 nodes, the value estimation is simply zero.

8) Search Parameters: In both Level 1 and Level 2, we let
the exploration rate 𝜂1, 𝜂2 = 0.1. Since we only have value
estimation for Level 1, there is only one adaptive parameter
𝜆 for Level 1 only. When no reward > 0 has been found,
𝜆 = 0. After any positive reward is observed, 𝜆 = 1.

B. In-hand Manipulation
1) Robot model: The setup is the same as Appendix II-

A.1. The only difference is that we now have a workspace
limit for each finger.

2) Task mechanics: We use quasi-static models (as de-
scribed in Appendix II-A.2) or force closure [63].

3) Feasibility Check: includes workspace limit check for
fingertips, task mechanics check, and finger relocation check.

Features, action probability, reward, value estimation, and
search parameters are the same as the Manipulation with
Environment Interactions task.

C. Robot Experiment: Dexterous DDHand
1) Dexterous DDHand Overview: Dexterous DDHand is

a direct-drive hand with 4 Dofs. It has two fingers and
each finger has 2 Dofs for planar translation motions. Each
fingertip is a horizontal rod. As a result, we use two endpoints
of the rod to approximate the line contact. We provide the
planner with the forward and inverse kinematics of the hand.
We also provide a contact relocation planner, which follows
the object surface (5mm above the object surface) and goes
to the new contact location.

2) Feasibility Checks: include inverse kinematics check,
collision check, finger relocation force check, finger reloca-
tion path check (are there collisions on the relocation path),
and task mechanics check.

Task mechanics, features, action probability, reward, value
estimation, and search parameters are the same as the Ma-
nipulation with Extrinsic Dexterity task.

3) Execution: Given a planned fingertip trajectory, we
compute the robot joint trajectory using inverse kinematics
and execute it with robot joint position control. In order to
ensure some contact force, we shift the end-effector trajectory
in the environment contact normal direction for

Δposition = Desired contact force
Stif fness

(14)

where the stiffness can be tuned due to the direct-drive
property.

The execution was conducted in an open-loop manner,
meaning that there was no object pose estimation or force
control involved. The system was calibrated to ensure that the
initial object pose errors are kept within a tolerance of 1 mm.
We chose not to provide a formal success rate in our report
since this number lacks significance due to its dependency
on the accuracy of our manual calibration process. However,
as a point of reference, with an initial pose precision of 1
mm, we estimate a success rate of approximately 4 out of 5
attempts.

D. Robot Experiment: Delta Array
1) Delta Array System Overview: The array of soft delta

robots is a research platform for the development of multi-
robot cooperative dexterous manipulation skills. The system
is comprised of 64 soft linear delta robots arranged in an
8x8 hexagonal tessellating grid. Each 3D printed soft delta
linkage is actuated using 3 linear actuators to give 3 degrees
of translational freedom with a workspace of 3.5cm radius

in the X, and Y axes and 10cm in Z-axis. The links are
compliant with high elasticity and low hysteresis, with a
soft 3D printed fingertip-like end-effector attached to it. We
simplify the workspace of each delta robot to be a cylinder
with a 2.5cm radius and 6cm height.

We provide the forward and inverse kinematic models
to the planner. While running the planner, the IK check is
simplified to a workspace limit check (if the contact point
is in the cylinder workspace). We only perform collision
checks for the fingertips, not the links. While doing the actual
execution of the plans, we use inverse kinematics to calculate
the robot joint trajectory from the contact point trajectory. In
order to ensure some contact force, we shift the end-effector
trajectory in the same way as Equation 14, where the stiffness
is manually calibrated.

We relocate contacts by letting the delta robot to leave
the contact in the contact normal direction, go around the
edge of the workspace, and come to the new contact in its
normal direction. The entire plan is executed in open-loop.
Although delta robots may not offer a high level of accuracy
and repeatability, their passive compliance allows for minor
deviations from the planned trajectory to be accommodated.

2) Feasibility Check: include workspace limit check, col-
lision check, task mechanics check.

Task mechanics, features, action probability, reward, value
estimation, and search parameters are the same as the Ma-
nipulation with Extrinsic Dexterity task.

APPENDIX III
RRT FOR ROLLLOUT

The RRT process is summarized in Algorithm 4. The
inputs are the current object pose 𝑥current, selected contact
mode 𝑚selected, and the object goal pose 𝑥goal. If it can find a
solution, it outputs a trajectory from 𝑥current to 𝑥goal. Every
point on the trajectory is (𝑥, 𝑚), where 𝑥 ∈ SE(3) is an object
pose, 𝑚 is an environment contact mode.

At each iteration, SAMPLE-RANDOM-OBJECT-POSE sample
a new object pose 𝑥extend ∈ SE(3). We find the nearest neigh-
bor 𝑥near of 𝑥extend, and attempt to extend it towards 𝑥extend
(line 5 - 15, Algorithm 4). Each extension is performed
under the guidance of a contact mode. If 𝑥near happens to be
𝑥current, we let the contact mode be 𝑚selected chosen by Level
1 MCTS. Otherwise, the function SELECT-CONTACT-MODE
will select the contact mode(s) to perform the extension un-
der. The procedure EXTEND-WITH-CONTACT-MODE extends
𝑥near towards 𝑥extend under the guidance of a selected contact
mode 𝑚 through projected forward integration.

Next, we explain all the functions in detail.
SAMPLE-RANDOM-OBJECT-POSE sample a new object pose

𝑥extend ∈ SE(3). The probability of 𝑥extend being the goal
pose is 𝑝sample, while the probability of it being a random
object pose in SE(3) is 1−𝑝sample. We can specify the range
limit for the random sample of the object pose.

NEAREST-NEIGHBOR finds the closest object pose to 𝑥extend
in the tree. The distance between two object poses is com-

Algorithm 4 RRT for Expansion and Rollout
1: procedure RRT-EXPLORE(𝑥current, 𝑚selected, 𝑥goal)
2: while resources left and the goal is not reached do
3: 𝑥𝑟𝑎𝑛𝑑 ← SAMPLE-RANDOM-OBJECT-POSE(𝑥𝑔𝑜𝑎𝑙 , 𝑝sample)
4: 𝑥near ← NEAREST-NEIGHBOR(𝑥rand)
5: if 𝑥near = 𝑥current then
6:  ← {𝑚selected}
7: else
8:  ← SELECT-CONTACT-MODES(𝑥near, 𝑥rand)
9: end if

10: for 𝑚 ∈  do
11: 𝑥new ← EXTEND-WITH-CONTACT-MODE(𝑥near, 𝑥rand, 𝑚)
12: if 𝑥new ≠ null then
13: ADD-TO-RRT-TREE(𝑥new, rrt)
14: end if
15: end for
16: end while
17: solution-path ← BACKTRACK(𝑥goal, rrt)
18: return solution-path
19: end procedure
20: procedure SELECT-CONTACT-MODE(𝑥near, 𝑥rand)
21: 𝑝𝑒𝑛𝑣 ← ENVIRONMENT-CONTACT-POINT-DETECTION(𝑥near)
22: 𝑒𝑛𝑣 ← ENUMERATE-CONTACT-MODES(𝑝𝑒𝑛𝑣)
23: for all 𝑚 ∈ 𝑒𝑛𝑣 do
24: if EXTEND-FEASIBILITY-CHECK(m, 𝑥near, 𝑥rand) then
25:  ← {𝑀,𝑚}
26: end if
27: end for
28: return 
29: end procedure
30: procedure EXTEND-WITH-CONTACT-MODE(𝑥near, 𝑥rand, 𝑚)
31: 𝑥now = 𝑥near
32: while true do
33: if not EXTEND-FEASIBILITY-CHECK(m, 𝑥now, 𝑥rand) then
34: break
35: end if
36: 𝑣 ← VELOCITY-UNDER-MODE(m, 𝑥now, 𝑥rand)
37: if 𝑣 close to zero then
38: break
39: end if
40: ⊳ Projected forward integration
41: 𝑥now ← INTEGRATE(𝑥now, 𝑣)
42: 𝑥now ← PROJECT-TO-CONTACTS-MAINTAINED(𝑥now, 𝑚)
43: if encounter new contacts then
44: break
45: end if
46: end while
47: return 𝑥now
48: end procedure

puted as 𝑤𝑡 ∗ 𝑑𝑡 + 𝑤𝑟 ∗ 𝑑𝑟. 𝑤𝑡 and 𝑤𝑟 are the weights for
translation and rotation. 𝑑𝑡 is the Euclidean distance between
their locations, and 𝑑𝑟 is the angle difference between two
rotations. A simple way to compute 𝑑𝑟 is to first compute the
rotation between two poses 𝑅diff = 𝑅1𝑅𝑇

2 , and convert 𝑅diff
to axis-angle representation and let 𝑑𝑟 be equal to the angle.
In general, the users need to adjust the weights according to
how important object orientation or position is important in
the task. Not much tuning is needed. In our experiment, we
scale the object sizes such that the average length of their
bounding boxes is about 1 to 10. In this case, one can set
the weights using this rule: normal (1), not very important
(0.5), not important at all (0.1).

SELECT-CONTACT-MODE first enumerates all contacting-
separating contact modes, then filters out infeasible mode
through EXTEND-FEASIBILITY-CHECK, and finally returns the
set of all feasible modes.

EXTEND-FEASIBILITY-CHECK has two options in imple-
mentation. The first option involves storing the robot contacts
during the search process. If the current robot contacts
pass the feasibility check in Section IV-C.3, the check is
deemed successful. However, if they fail, the check can still
be considered successful if a sampled set of feasible robot
contacts can be generated, ensuring a feasible transition from
the current contacts. The current contacts are then updated
accordingly. The second option finds if there exists a set of
robot contacts that satisfy the feasibility check. Unlike the
first option, this method does not retain information about
robot contacts. Instead, it is consider successful if it can
sample any set of robot contacts, as long as they pass the
feasibility check. The second option is more relaxed as it does
not take into account previous robot contacts and transitions.

EXTEND-WITH-CONTACT-MODE extends 𝑥near towards
𝑥extend as much as possible under constraints posted by
contact mode 𝑚. VELOCITY-UNDER-MODE solves for the
object velocity that get 𝑥near as close as possible to 𝑥extend
with respect to the velocity constraints introduced by 𝑚. We
then integrate the object pose for a small step in the direction
of constrained object velocity, and project the new object
pose back to the contacts that needed to be maintained.

In PROJECT-TO-CONTACTS-MAINTAINED, the contact
mode 𝑚 needs to be maintained. We first perform contact
detection on the object. We then project the object pose
back to where the maintaining contacts in 𝑚 have zero
signed distances.

	Introduction
	Related Work
	Dexterous Manipulation Planning
	Monte-Carlo Tree Search

	Preliminary: MCTS
	Hierarchical Planning Framework
	Task Description
	Level 1: Planning Environment Contact Modes and Object Trajectories
	Selection — Interleaved Search Over Discrete and Continuous space
	Expansion
	RRT as Rollout

	Level 2: Planning Robot Contacts
	State and Action Representation
	Sampling and Pruning for Action Selection
	Feasibility Check

	Level 3: Path Evaluation and Control Optimization

	Examples and Experiments
	Implementation
	Robot Model
	Task Mechanics
	Feasibility Checks
	Features and Rewards
	Action Probability
	Value Estimation
	Search Parameters

	Manipulation with Extrinsic Dexterity
	Ablation of Hierarchical Structure and MCTS
	Efficient Robot Contact Planning

	In-hand Manipulation
	Different Hand Configurations
	Add an Auxiliary Goal

	Robot Experiments
	DDHand
	Delta Array

	Discussion
	References
	Appendix I: Setting up New Scenarios
	Applicability
	Setup a new robot/hand
	Contact force models for fingertips
	Forward and inverse kinematics for fingertips
	Robot collision model
	Contact relocation planner (optional)
	Contact sampling on the object surface (optional)
	Trajectory optimizer (optional)

	Setup a new task type
	Task Mechanics
	Design choices
	Parameters

	Setup a new environment
	Setup a new object

	Appendix II: Experiment Details
	Manipulation with Environment Interactions
	Robot model
	Task mechanics
	Feasibility Checks
	Features
	Action Probability
	Reward Design
	Value Estimation
	Search Parameters

	In-hand Manipulation
	Robot model
	Task mechanics
	Feasibility Check

	Robot Experiment: Dexterous DDHand
	Dexterous DDHand Overview
	Feasibility Checks
	Execution

	Robot Experiment: Delta Array
	Delta Array System Overview
	Feasibility Check

	Appendix III: RRT for rolllout

