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Abstract—Particle Size Analysis (PSA) is an important process carried out in a number of industries, which can significantly influence
the properties of the final product. A ubiquitous instrument for this purpose is the Optical Microscope (OM). However, OMs are often
prone to drawbacks like low resolution, small focal depth, and edge features being masked due to diffraction. We propose a powerful
application of a combination of two Conditional Generative Adversarial Networks (cGANs) that Super Resolve OM images to look like
Scanning Electron Microscope (SEM) images. We further demonstrate the use of a custom object detection module that can perform
efficient PSA of the super-resolved particles on both, densely and sparsely packed images. The PSA results obtained from the super
resolved images have been benchmarked against human annotators, and results obtained from the corresponding SEM images. The
proposed models show a generalizable way of multi-modal image translation and super-resolution for accurate particle size estimation.

Index Terms—Generative adversarial networks, object detection, microscopic particle size analysis, neural networks
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1 INTRODUCTION
Particle Size Analysis (PSA) enables accurate estimation of par-
ticle sizes of microspheres, offering insights into the material
or the powder being formed, and is often a crucial process in
manufacturing pipelines. Estimating the size of particles in a
sample can help in determining many physical and chemical
properties of the material like packing density, flow characteristics,
reactivity, dissolution rate, texture, and appearance of the finished
product [1] [2].

The most common techniques for PSA are Laser Diffraction
(LD), Dynamic Light scattering (DLS) and Imaging Particle
Analysis (IPA). IPA is extensively used For microspheres where
particle shape and size is of extreme importance. A significant
advantage of using OM image-based analysis is that, it is a non-
intrusive method with reasonable costs and decent performance.
However, more advanced microscopy techniques like Scanning
Electron Microscopes (SEMs) that are quite expensive can be
used for granular magnification to capture images with sharp
boundaries and depth information.

The use of traditional Image processing techniques like edge
extraction, thresholding, and segmentation, for PSA, has been
shown in [3] [4] [5]. The segmentation maps obtained are used for
particle sizing. A conversion factor is used to obtain real values
using the size of the particles in pixels.

Methods like Hough Circle Transform (HCT) have been used
for localization and counting of cell nuclei in phase-contrast
microscopy images [6]. In [7], a modified HCT was used for
nanoparticle diameter estimation. Although HCT performs well
for high-resolution electron microscopy images, results on OM
images need parameter fine-tuning due to variable lighting and
background conditions across various images. This reduces the
accuracy of predictions of the algorithm for unseen images.
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(a) OM (b) SEM

Fig. 1: Ground truth images. (a) shows bleeding of edges in OM
images. (b) shows sharp edges from SEM images.

Deep neural network based methods have proven to be robust,
and outperform the traditional image processing based techniques
[8]. We use a Convolutional Neural Network (CNN) in the form
of a custom object detection model to perform particle size
analysis. Use of CNNs for cell nuclei classification, detection,
and segmentation of nanoparticles has been shown in [9] [10]
[11] [12]. These approaches have proven useful for particle sizing
on high-quality SEM images. However, when applied on OM
images, these methods fail to detect dense agglomerates of blurred
particles effectively.

Although use of deep neural network based approaches seems
straightforward, performance of these models is heavily dependent
on the ground truths being perfect. However, accurate annotation
of optical microscopy particles is a non-trivial task, even for
human annotators. Due to bleeding of the edges of the particles
caused by diffraction of light, accurately sizing them is an uphill
task. On the other hand, from Fig. 1, we can see that annotations
for SEM images can be easily created due to their sharp edges.
Thus we propose that the quality of the ground truth data can
be improved significantly by converting OM images to the SEM
domain and then applying an object detection algorithm to perform
particle size analysis.

ar
X

iv
:2

01
0.

09
59

4v
1 

 [
ee

ss
.I

V
] 

 1
9 

O
ct

 2
02

0



To convert OM images to look like SEM images, image-based
conditional Generative Adversarial Networks (GANs) like Pix2Pix
[13] can be used. This process is known as image translation, and it
converts images from OM domain to the SEM domain. However,
the Pix2Pix model fails to add sharp edges and detailed texture
information of the SEM particles. Hence, we use the ESRGAN
model [14] for the super-resolution of the Pix2Pix output. In this
regard, the core contributions of this work are as follows:

• A combination of two GANs that can be used to translate
and subsequently Super Resolve OM images to look like
SEM images.

• A dense object detection model to perform PSA on super-
resolved images.

2 BACKGROUND
2.1 Super Resolution GANs
There has been great improvement in the quality of images
generated by GANs since their inception. However, for the most
part, GANs are considered as black boxes with a utopian Nash
Equilibrium that may never be reached [15]. Despite being difficult
to train, the synthesizing capability of GANs has proven useful in
myriads of applications [16] [17]. Conditional GANs (cGANs)
[18] demonstrate the capability to condition the Generator to
produce desired output. cGANs have made great progress in image
generation from text [19], image in-painting [20], style transfer
[13] and super-resolution [21].

There have been many works presenting the use of GANs [22]
to super resolve microscopy images [23] [24] [25]. In [24], cGANs
have been used for cross-modal super-resolution of Stimulated
Emission Depletion (STED) microscopy images. In [23], a U-Net
based GAN was used for the super-resolution of low-resolution
SEM images. These methods involve the use of images from
similar distribution to perform super-resolution.

In [25] segmentation maps of OM images of pollen grains
were super resolved to look like SEM images at a higher magnifi-
cation. This approach shows use of multi-modal super resolution.
However, the amount of individual preprocessing involved in
segmenting each particle is not practical for our application, due
to the presence of a large number of clustered particles. Hence, we
propose use of a Pix2Pix model for the initial image translation
and an ESRGAN model for the subsequent super resolution. Our
method is reproducible and works without the need of manual
preprocessing on the particles.

2.2 Particle Size Analysis
Some novel techniques in PSA involve the use of neural networks
for regression and object detection. In [26], neural networks have
been used to estimate sieve size for particles on a conveyor
belt, based on edge detection metrics like Feret distance, best-
fit rectangle, area, etc. In [27], the use of Mask R-CNN has
been demonstrated for object detection, segmentation, and particle
size analysis. These approaches have proven useful for high-
quality electron microscopy images. However, their use on optical
microscope images becomes a difficult task, primarily due to the
thick blurred edges.

From the region-based object detection networks to monolithic
object detection networks like YOLO [28], RetinaNet [29] and
SSD [30], the field has witnessed an astonishing growth in
algorithms in the last few years. Single shot detection algorithms

have dominated the field with high mean Average Precision (mAP)
values while being able to run in real-time. However, even with
dense object detection algorithms like RetinaNet, these algorithms
often find it difficult to detect and size densely packed particles
with high precision.

Our object detection algorithm also uses a single feed-forward
operation but has a four-dimensional patch at its output as opposed
to a fully connected layer. Also, since our microscopic particles
are circular in nature, we regress their circle coordinates (x,y,r)
and confidence p as opposed to box coordinates. This method
has been inspired by [31], where the authors present a multi-scale
approach for object detection in high-density images.

We devise an object detection algorithm – Super Resolution
Particle Sizing Algorithm (SR-PSA) – which is used to detect
particles in sparse as well as highly dense clusters of particles.
Along with our "primary" dataset, which is used for preliminary
training and validation, we use two more datasets – "secondary"
and "tertiary", to measure the performance of the model on
particles with varied distributions as shown in Fig. 7. We compare
the results from our algorithm to those generated by human
annotators.

3 METHOD

(a) OM (b) SEM

(c) SR (d) SR with PSA

Fig. 2: (a), (b) are the ground truth images, (c) is the super resolved
image, and (d) shows PSA output on (c).

3.1 Image Pair Registration

Image Pair Registration is an important step for Super-Resolution
using GANs, as it aligns the image in one mode (OM) with respect
to another (SEM). This enables the model to learn the one-to-one
mapping between the low-resolution OM images and the high-
resolution SEM images. As shown in Fig. 3 OM and SEM image
pairs were obtained by using fiducial markers on the captured
samples. The image pairs were registered using affine transforms
in a landmark-based registration algorithm. The semi-automatic
algorithm used landmark points from the user on the input image
and the target image to perform registration.



Fig. 3: The pipeline describing the flow of the entire process

3.2 Multimodal Image Translation

We use the Pix2Pix GAN [32] for multimodal image translation
as our baseline model. In the Pix2Pix architecture, a conditional
image is provided as input to the U-Net generator. The down-
sampling layers in the U-Net model form a latent representation
of the input image. By using advanced operations like Spec-
tral Normalization [33], Self-Attention [34], and Anti-Aliasing
pooling [35] on the convolutional layers, we improve the latent
representations of our input data. This improves the performance
of the generator by simplifying the task for the up-sampling layers,
thus enabling faster convergence of the model. We also implement
spectral normalization and anti-aliasing pooling for the PatchGAN
discriminator [36].

Loss Function For image-conditional GANs, the generator
loss is obtained by calculating the error between the generated
output and the real image. L1 loss function minimizes the sum
of the absolute difference between the generated and the target
images, while the L2 loss function minimizes the sum of squared
differences between the generated and the target images.

L2 loss has been shown to induce blurriness in convolutional
generative models due to its averaging effect [37] [20]. Hence, the
default Pix2Pix model implements an L1 loss for the generator.
L1 loss promotes sharp boundaries in natural scenes. However,
we observe that use of L1 loss results in elongated boundaries
for circular particles. Since our main objective is particle sizing
for circular particles, these distortions were not acceptable. We
propose the use of Root Mean Squared Error (RMSE) loss to
mitigate these distortions. RMSE loss increased the circularity of
the particles, whilst keeping blurring at a minimum. A simple
comparison between the results obtained by these loss functions
is demonstrated in Fig. 8. Hence, for a n input images x and the
generator G(x), our loss is given by:

LRMSE(G) = Ex,y

[√
∑

n
i=1(y−G(x))2

n

]
(1)

Where y is the target SEM image. During the initial epochs,
the generator output results in large loss values, which is limited
by the RMSE loss function. As training progresses, the losses
decrease to small values, which are slightly amplified by the
RMSE loss function. This results in a more dynamic weight update
as compared to L1 and L2 losses.

The final optimization over the network is given by:

argmin
G

max
D

LcGAN(G,D)+λRMSELRMSE(G) (2)

Where λ controls the weight of RMSE loss function and can be
considered as a hyperparameter.

3.3 Image Super Resolution
Since Pix2Pix is an image translation model, the output lacks
the intricate details of the SEM particles. To add sharp edges
and diverse texture information we use another cGAN for super-
resolution of the Pix2Pix output. The ESRGAN [14] model has
proven useful in many applications like the super-resolution of old
games, low-resolution photographs, old movies, etc. Hence, we
train an ESRGAN for our application due to its generalizability
across various domains.

The use of Relativistic average discriminator [38] (DRa) has
been shown to improve the generator by making the discriminator
predict relativistic probabilities. Rather than classifying images as
real or fake, DRa tries to predict the probability that a real image
xr is more realistic than a fake image x f as shown in [14].

Loss Function For the generator firstly we use L1 loss be-
tween the fake and the real images, for maximizing the sharpness
of the particles. The relativistic discriminator loss LR

GAN is taken
as the average value of loss generated by the real image, and
the loss generated by the fake image [14]. We also incorporate
perceptual loss from the default implementation. A pretrained
VGG-19 [39] model is used to extract pre-activation feature maps
from the generated output as well as the real image. The L1
distance between the two feature maps is used to calculate the
perceptual loss Lperceptual . Thus, the total generator loss LG is
given as,

LG = Lperceptual +λLR
GAN +ηL1 (3)

λ and η are parameters that can be tuned to give weightage
to relativistic loss and L1 loss respectively. As the perceptual
loss values are very small, we use λ = 0.05 and η = 0.01.
We demonstrate good quality of images being generated by the
ESRGAN after certain improvements in Fig. 2c. Generated images
preserve the geometrical and structural properties of particles of
various sizes through the super-resolution process.

3.4 Particle Size Analysis
For the particle sizing application, instead of bounding boxes, we
regress circle coordinates (x, y, and r). For single class object
detection, the need for a separate classification layer is mitigated.
Hence, for our application, we use a single feed-forward network
to detect circles in the super-resolved images. The ground truth
is created using manual annotation over the particles, and the
network is trained to predict annotations with high precision and
accuracy.

The SR-PSA detection module is a simple Convolutional Neu-
ral Network (CNN) that has 6 convolutional layers. The first five
layers have a kernel size of 3×3 to extract features and the final
layer has four feature maps where classification and regression
are done in a single iteration. The layers are chosen such that a



(a) OM (b) SR (c) SR + SN (d) SR + SN + AA + SA (e) SEM

Fig. 4: (a) is the input OM image and (e) is the corresponding SEM image. (b) is the result of default implementation of the pipeline.
(c) is the result after adding Spectral Normalization. (d) is the best result obtained after adding all the proposed improvements.

maximum of two max-pooling operations are performed, i,e the
input image is downscaled by 4. The last layer is replaced by
a 2D convolution which converts the input feature maps to a 4-
dimensional output – [p, x, y, r], where p is the confidence map
and x, y, and r are the particle coordinates and radius respectively.
Since the size of input images is very large (4752× 3168), we
save the images as 4× and 8× down-scaled images (1188×792,
594×396).

Loss Functions At each pixel level in the feature map, the
model is trained to assign high probabilities if the center of a
particle exists at that location and low probabilities for any other
point in p. The probability mask is applied on output to suppress
predictions lesser than a predefined threshold (pthresh), given as
pmask = p > pthresh. Similarly, for x, y, and r, the model regresses
their respective values at every location in the output. We use
L2 distance to compute loss for the model and mask only those
regions where the radius values exist. For the ith output, the
predicted coordinates are l and ground-truth coordinates are g,
then the objective is given as,

xierr = Exi [MSE(lx,gx)� pmask]

yierr = Eyi [MSE(ly,gy)� pmask]

rierr = Eri [MSE(lr,gr)� pmask]

pierr = Epi [λMSE(lp,gp)� pmask],

(4)

where λ is a tunable weight parameter. The final loss is given as,

Ltotal =
xierr + yierr + rierr + pierr

4
(5)

4 GAN IMPROVEMENTS
The default implementation (Pix2Pix with the ESRGAN) gener-
ated particles with boundaries blended into other particles in the
cluster. As a result, the particle sizing algorithm found it difficult
to regress circle coordinates, giving incorrect size estimations.
Hence, we added the state-of-the-art improvements in CNNs and
GANs to our models for better-looking images with sharp and
clear boundaries. The changes can be tracked in Fig. 4.

4.1 Spectral Normalization
We use Spectral Normalization (SN) [33] on all the down-
sampling 2D convolution layers of our Pix2Pix as well as ES-
RGAN models. This helps us bound the latent space genera-
tion of the deep feature maps. In the original implementation
of ESRGAN, batch normalization was eliminated due to less
generalizability and the presence of unpleasant artifacts. But

without any form of normalization, our experiments often resulted
in either mode-collapse or overfitting. The ESRGAN training
stability improved by the use of SN over the generator as well
as the discriminator.

Even with large variations in the input images, the variation
in the distribution of generated images remains low due to the
addition of SN. In all the experiments done using our model,
observed convergence of the losses after incorporating SN. Spec-
tral normalization only requires one hyperparameter tuning, the
Lipschitz constant, which works well at its default value of 1.

A function f is said to be Lipschitz continuous if, for a given
metric (L2 Loss), it satisfies the following condition:

|| f (y)− f (x)|| ≤ K||y− x|| (6)

If K is minimum, then it is the Lipschitz constant of a function,
and Lipschitz continuity limits the rate of change of the function
with respect to K. The weights in the convolutional layers can
be bound by a Lipschitz constant which is controlled by applying
spectral norm on each layer.

In [33] is shown that for a weight matrix W , the spectral norm
is given by the square root of the largest eigenvalue of W TW . The
Power Iteration method is used to compute the spectral norm of
W , given by σ(W ), efficiently. Spectral Normalization of a layer
then becomes simply replacing W by W/σ(W ).

4.2 Anti-Aliasing
The down-sampling network in U-Net uses strided-convolutions in
the default Pix2Pix implementation. With strided-convolutions, we
observe deformations of particle boundaries for images with size
distributions different than training images. Hence, we adopt anti-
aliasing pooling [34] in our Pix2Pix model for the down-sampling
layers in the generator as well as the discriminator. We observe
increased circularity of the particles with the addition of anti-
aliasing pooling, especially in dense particle clusters. Although
the anti-aliasing operations require more compute than simple
max-pooling operations, the performance increase makes up for
it.

4.3 Self-Attention
With the final addition of Self-Attention (SA), the output from
our Pix2Pix model shows uniform illumination over the entire
generated image, whilst maintaining high recall of boundaries
and edges of the particles. The modified generator architecture is
shown in Fig. 5. The number of parameters in SA layers increase
exponentially with increase in the size of the feature map. For our
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Fig. 5: Final Pix2Pix generator architecture after improvements. The self-attention block has been inspired from [35]
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Fig. 6: SR-PSA Object Detection model. The CNN has two max-pooling layers. Thus, the ground truth maps are scaled down by 4. For
each iteration, the image is down-sampled by 4 and 8 for the same model.

application, since the size of input images is 512×512, we restrict
SA operations over the smallest three layers in the generator.

For a hidden layer, the self-attention [40] algorithm computes
three 1×1 convolutions, f (x), g(x)and h(x). Matrix multiplication
is performed on f (x)T and g(x) and a SoftMax function is applied
on the output. This results in generation of the attention map.
The attention map is again multiplied with h(x). A final 1× 1
convolution operation is performed on the output, to generate v(x).
The output of the self-attention algorithm is then added to the
original hidden layer through a multiplication factor of γ . Thus,
the final output is given as,

yi = γoi + xi (7)

γ is a learnable variable which is initialized to 0. In the initial
stages of training, the network focuses on local cues. As training
progresses, more weight is given to non-local features. Thus, the
network learns easier tasks first, and gradually learns complex
connections with distant spatial features [35]. The final Pix2Pix
model with improvements is shown in Fig. 5

4.4 Training Stabilization
During GAN training, we observe that the discriminator usually
gets trained fairly quickly. This results in it overpowering the
generator, by accurately classifying generated images as fake,
thus disabling the generator from improving. The Two Time-
Scale Update Rule (TTUR) presented in [41], advocates the use



of separate learning rates for the generator and the discriminator.
Implementation of TTUR in SAGAN [35] was shown to speed up
the training of the discriminator.

We propose a switching TTUR technique for efficiently train-
ing the network. Initially, we set the learning rate for the generator
higher than the discriminator. This induces divergence in the GAN
losses after low-level features are captured. We then switch the
learning rates for the generator and the discriminator and continue
training while periodically decreasing both the learning rates. We
also use label-smoothing to reduce "Over Confidence" of the
discriminator during loss generation [42] [43].

5 IMPLEMENTATION
The following section describes the implementation details of our
pipeline. We use ADAM [44] Optimizer for all the models and set
the Lipschitz constant to 1 for spectral normalization.

5.1 Data
For image super-resolution, we use registered optical microscope
and scanning electron microscope images for training the GANs.
Since data extraction is a difficult and time-consuming process,
a total of 578 original image pairs were available. Since these
images were of 4K resolution, we extracted small 1024x1024
patches from the original images. These patches were resized to
512x512 resolution for computation efficiency.

We perform data augmentation to increase the size of the
dataset, add more variability, and to prevent overfitting to the
small sample size. For particle size analysis (PSA), once the
images are super-resolved, we stitch the super-resolved images
together to get the original sized image (4752x3168), which are
then trained to detect the particles. Ground truth data for PSA is
generated by human annotators. We compare our model output
annotations against ground truth human annotations and other
algorithms that have been proposed for particle size analysis using
image processing.

5.2 Training
5.2.1 AASNA-Pix2Pix
For multi-modal image translation, we used 512x512 patches of
OM and SEM pairs. Initially, the input images were read in
RGB. But we found higher generalizability by the model for
grayscale OM input images. We attribute this to the variability
in illumination in the images captured by optical microscopes. For
the Pix2Pix model with Anti-Aliasing, Spectral Normalization,
and Self Attention (AASNA-Pix2Pix) learning rates of 0.005 and
0.001 were used for the generator and the discriminator respec-
tively. We switch the learning rates at around half the epochs and
then train the network with periodically decaying learning rates.
For momentum, the parameters are set as β1 = 0.5,β2 = 0.999 and
the RMSE loss parameter λRMSE = 5.

5.2.2 Improved-ESRGAN
For super-resolution using our ESRGAN with SN (Improved
ESRGAN), input images from the AASNA-Pix2Pix model of
size 512x512 were resized to 128x128. The 128x128 images
were then super-resolved to get a 512x512 size image outputs
using ESRGAN-SN. For training, we set learning rates to 0.003
and 0.001 for the generator and the discriminator respectively.
Similar to previous training, we switch the learning rates, when

the losses start to diverge and decay them periodically after the
switch. We use a set of 23 Residual-in-Residual Blocks (RRDBs)
[14] in the generator. For momentum, the parameters are set as
β1 = 0.9,β2 = 0.999.

5.2.3 Particle Size Analysis
The data was collected such that all practical modalities were
covered. We divided the entire set of images into primary, sec-
ondary, and tertiary datasets. Ground truths (GT) were created by
manually annotating the particles. 80% of the primary dataset was
used for training and the remaining for validation and testing. The
distributions of all datasets are shown below.
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Fig. 7: Primary, Secondary and Tertiary data set distributions

The training data and corresponding ground-truth, before be-
ing fed to the SR-PSA network, were converted to grayscale and
scaled-down by 4 and 8 to overcome scale imbalance. Feeding
the network at different scales helps in extracting features of
larger as well as smaller sized particles, which in turn helps in
detecting particles from various size distributions. The ground-
truth radii were normalized by a factor called max-radius, which is
considered as a hyperparameter. The output at different scales was
finally merged to get the final predictions. The objective was to
optimize the Loss function given in Eq. 5. Throughout the training,
we used a batch size of 4 with ADAM optimizer with learning
rate, weight decay, λ , and max-radius as 0.0001, 0.000001, 5, 5
respectively.

6 EXPERIMENTS
We use separate evaluation metrics for qualitative measurement of
GAN outputs and quantitative measurement of the PSA outputs.

6.1 Super Resolution

Evaluation of the quality of synthetic images is a highly domain-
specific question. One of the most intuitive ways for qualitative
measurement of generated images is manual GAN evaluation.
Manual evaluation is suitable for the development and quick
prototyping of models by changing hyperparameters. However,
due to inherent bias in human supervision and large amount of
time involved, it is not suitable. Hence, we rely on qualitative
measures to evaluate the performance of our GANs. For all com-
parison metrics, we use three sets of implementations. For each
implementation, the best model obtained after hyperparameter
tuning was used to get the evaluation metrics.



Experiment SSIM (primary) SSIM (secondary) PSNR (primary) PSNR (secondary)
Default 0.492 0.503 28.4780 dB 28.9571 dB
SN-Pix2Pix + SN-ESRGAN 0.5 0.463 28.7491 dB 28.2375 dB
AASNA-Pix2Pix + SN-ESRGAN 0.566 0.534 29.7563 dB 29.68949 dB

TABLE 1: SSIM and PSNR scores for best models from different experiments

Mode Primary Secondary Tertiary
Density Coverage Density Coverage Density Coverage

Default 0.9353 0.7809 0.6966 0.6592 0.4346 0.6029
SN-Pix2Pix + SN-ESRGAN 0.9162 0.5432 0.5865 0.4851 0.4084 0.4157
AASNA-Pix2Pix + SN-ESRGAN 0.9527 0.8840 0.9325 0.8765 0.7822 0.6947

TABLE 2: Comparison b/w the three implementations on basis of Density and Coverage values for Primary, Secondary and Tertiary
datasets.

Experiment Mean D50 Mode StDev CV
Ground Truths 9.34 8.89 8.60 2.33 24.96
SR-PSA 9.19 8.86 8.55 2.42 26.32
YOLOv5 9.33 8.89 8.64 2.35 25.24

TABLE 3: Comparison b/w Ground Truth, SR-PSA and YOLOv5 Predictions on Primary data set

Experiment Mean D50 Mode StDev CV
Ground Truths 6.74 6.47 6.46 1.48 22.00
SR-PSA 6.94 6.71 6.47 1.48 21.38
YOLOv5 7.06 7.11 6.77 1.46 20.70

TABLE 4: Comparison b/w Ground Truth, SR-PSA and YOLOv5 Predictions on Secondary data set

Experiment Mean D50 Mode StDev CV
Ground Truths 6.73 6.86 7.01 0.92 13.62
SR-PSA 6.83 6.88 6.97 0.65 9.49
YOLOv5 7.6 7.11 7.35 1.3 17.08

TABLE 5: Comparison b/w Ground Truth, SR-PSA and YOLOv5 Predictions on Tertiary data set

Particle Count GT SR-PSA (% detected) YOLOv5 (% detected)
Primary 47166 46282 (98.13 %) 45765 (97.03 %)
Secondary 14806 14772 (99.77 %) 11689 (78.95 %)
Tertiary 14697 13397 (91.15 %) 8040 (54.71 %)
Combined Detections - 97.10 (%) 85.42 (%)

TABLE 6: Comparison of Particle detection’s b/w SR-PSA and YOLOv5 Predictions with respect to GT (ground truths) on combined
data set (primary+secondary+tertiary)

6.1.1 Default Implementation

Initially default implementations of Pix2Pix and ESRGAN were
replicated individually for our use-case. While ESRGAN is pow-
erful, it fails to perform end-to-end multi-modal super-resolution
effectively. Pix2Pix model is an image translation cGAN which
uses U-NET architecture for multi-modal transfer of peculiar
image features. A standalone Pix2Pix model trained on OM-SEM
pairs performs image translation of the particles and does not solve
the problem of thick and unsharp edges in OM images. Hence, we
combined Pix2Pix with ESRGAN to obtain truly super-resolved
particles from the input OM images.

6.1.2 GANs with Spectral Normalization

We observed frequent non-convergence of the models in the de-
fault implementations. We attribute the non-convergence problem
to the discriminator learning faster than the generator, resulting in
a sub-optimal generator residing in local minima, which keeps
generating identical particles without any diversity. To bring
stability to the training of both the models, SN was used in their
discriminators [33]. With the addition of SN and RMSE loss for

the Pix2Pix model, the circularity of particles increased, however,
these changes resulted in the images looking less realistic.

6.1.3 AASNA-Pix2Pix with ESRGAN-SN

Inspired by the Self-Attention GAN (SA-GAN) paper [35], we
added self-attention to our generator to capture spatially relevant
information. SA-GAN implements spectral normalization in gen-
erator and discriminator and shows significant improvement in
image generation capabilities of GANs. For a cGAN use-case, we
implement self-attention in the up-sampling part of the network
so that the generator doesn’t focus only on the local features.
This enables the generated images to have consistent texture
information even in the spatially distant parts.

To further bring stability to our models, we use anti-aliasing
pooling instead of max-pooling. We use a normalized Binomial-
5 filter which has shown to increase the consistency in CNNs
[34]. Since ESRGAN only looks at the Pix2Pix output, we add
self-attention and anti-aliasing to the Pix2Pix model. This enables
Pix2Pix to generate high quality images consistently irrespective
of the aberrations in the input, thus maintaining the quality of the
final results. Hence, the bulk of the responsibility is handled by



(a) L2 Loss (b) L1 Loss (c) RMSE Loss

Fig. 8: (a) L2 loss result shows significant blurring at the bound-
aries of the particles. (b) L1 loss result shows sharp, but non-
circular boundaries. (c) RMSE loss result shows slightly thicker,
but highly circular boundaries.

AASNA-Pix2Pix, so that the task becomes easier for the improved
ESRGAN to accomplish. Results of experiments with different
generator loss functions are shown in Fig. 8.

6.2 Evaluation
In the community, standard GAN performance is usually bench-
marked using metrics like Inception Score [34], Fréchet Inception
Distance (FID) [41], Structural Similarity Index Measure (SSIM)
[45] and Peak Signal-to-Noise Ratio (PSNR). For standard GANs,
since the real data is not exactly identical to the generated data,
one-to-one metrics like SSIM and PSNR do not work well.
However, for conditional GANs, if real images corresponding to
the input are available, these metrics are often used to measure the
quality of generated images.

6.2.1 Structural Quality Metrics
PSNR was originally used as a quality measurement tool between
compressed and reconstructed images. We use PSNR to show
marginal improvements in the image quality when compared to
the ground truth, as our implementation got better. We also com-
pare our implementations using SSIM. An empirical comparison
between the two methods is given in [46]. We show that our
AASNA-Pix2Pix + improved ESRGAN results are better than the
default implementation as shown in Table 1.

6.2.2 Fidelity and Diversity Metrics
Besides structural similarity, a good metric for GAN outputs is
FID. However, FID scores do not make sense for our application
because the generated images are quite similar looking to the real
images. Hence, singular FID scores of less than 2 are obtained,
which does not prove a reliable metric to compare. Recently,
precision and recall based metrics have been proposed by [47],
[48]. These metrics are based on an implicit quality of the data
called "manifolds". For complex high-dimensional data, that has
some underlying geometric differences, the differences can be
captured by its manifold in a 2D space. To evaluate our model, we
use the recently developed metrics of density and coverage [49],
which are an improvement over the aforementioned precision and
recall.

For calculation of manifolds, representative embeddings are
needed for the ground-truth and the generated images. Many eval-
uation metrics rely on the use of models pre-trained on ImageNet.
This may affect the evaluation as the pre-trained models include
a dataset bias as reported in [50], [49]. Thus, we use a randomly
initialized Inception_V3 model to obtain the representative em-
beddings, as random embeddings are free from any kind of bias

(a) Results for Primary Dataset

(b) Results for Secondary Dataset

(c) Results for Tertiary Dataset

Fig. 9: Comparison between ground truths for OM and SEM
datasets, and predictions by the SR-PSA and YOLOv5 models
for (a) Primary Dataset, (b) Secondary Dataset, and (c) Tertiary
Dataset.

and hence can provide sensible evaluation metrics as reported in
[49].

To test the density and evaluation metrics for our use case,
we generated two sets of synthetic images. One set of images had
random backgrounds with particles intact, and the other set had
washed out particles with the background intact. For the 1st set,
with particles intact, we observed a high coverage value. For the



2nd set, with the background intact, we observed a high density
value. Thus, for comparison between different models, we use the
density and coverage values as indicators of the quality of the
background and the generated particles respectively. Values for
the three datasets are presented in Table 2.

We observe a decline in the results of the second implemen-
tation with just spectral normalization, as the images generated
had many artifacts in the background for secondary and tertiary
testing datasets. With the implementation of Anti-Aliasing and
Self-Attention, we see a significant improvement across all the
datasets in both, density as well as coverage.

6.3 Particle Size Analysis
The important parameters in PSA are mean, d50, mode,
coefficient-of-variation (CV) and standard deviation (StDev) of
the particle size distribution. YOLOv5 object detection model was
trained on the same primary dataset to have a fair comparison with
SR-PSA. Since the testing dataset distributions were completely
different from the training, our evaluation metrics determine the
generalizability of SR-PSA. To quantify the robustness of our
model, we compare the kernel density estimation (KDE) plots
of SR-PSA and the YOLOv5 model with the human-generated
annotations ("Ground Truth") on OM and SEM images. This
comparison was done for the primary, secondary and tertiary
datasets.

The distributions were made in a non-parametric way using
the Improved Sheather-Jones (ISJ) algorithm. ISJ estimates band-
width by minimizing the asymptotic mean integrated square error
(AMISE) [51]. From the distribution the statistics such as mean,
median (D50), mode, StDev, CV were estimated. The comparison
of distributions for primary, secondary and tertiary data sets are
shown in Fig. 9a, Fig. 9b, and Fig. 9c respectively. As can be seen
from the plots, SR-PSA predictions have consistently followed the
same distribution as the manual annotations on the SEM images.

(a) YOLOv5 (b) Our Network

(c) YOLOv5 (d) Our Network

Fig. 10: (a) & (b) Predictions on Secondary Dataset, (c) & (d)
Predictions on Tertiary Dataset

The comparison of statistics for primary, secondary and ter-
tiary data sets are shown in Table 3, Table 4 and Table 5
respectively. Table 6 shows detection capabilities of SR-PSA and
YOLOv5 opposed to the ground truth annotations. Along with the
statistical accuracy, the amount of particles detected using SR-
PSA is significantly higher than the YOLOv5 model. YOLOv5
performed well for the primary dataset but failed to work on

secondary and tertiary data sets with a different particle size
distribution. Fig. 10 shows the inability of YOLOv5 to detect
particles that are smaller and densely packed. On the other hand
SR-PSA, consistently detects particles on distributions that are
drastically different from the primary dataset.

7 CONCLUSION AND FUTURE WORK
In this paper, we propose a powerful reproducible method for
super-resolution of optical microscopic particles and consequent
particle size analysis. In addition, we improve on the state-
of-the-art image-based cGAN methods to present the AASNA-
Pix2Pix architecture for image translation. The combination of
GANs in our method, which delivers high fidelity multi-modal
super-resolution can be extended to other domains with similar
requirements too. We demonstrate the application of our particle
sizing algorithm on top of the super-resolved images that achieves
accurate near-human performance for particle size analysis on
circular particles.

Further investigation is still needed to understand the general-
izability of the proposed pipeline across various industries. More-
over, we restricted the use of self-attention to the three smallest
layers in our Pix2Pix model. More experiments are needed with
other spatial attention techniques to reduce the computational
complexity of the model, whilst maintaining the quality of the
performance.
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